easy-local-alpr/alpr_api.py

418 lines
13 KiB
Python
Raw Normal View History

import base64
import io
2024-07-17 18:57:51 +02:00
import json
import logging
2024-07-17 18:57:51 +02:00
import os
import sys
import threading
import time
import traceback
2024-07-17 18:57:51 +02:00
import ultimateAlprSdk
from PIL import Image, ImageDraw, ImageFont
2024-07-17 21:14:01 +02:00
from flask import Flask, request, jsonify, render_template
2024-07-17 18:57:51 +02:00
# Setup logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
counter_lock = threading.Lock()
2024-07-17 18:57:51 +02:00
counter = 0
bundle_dir = getattr(sys, '_MEIPASS', os.path.abspath(os.path.dirname(__file__)))
2024-07-26 10:26:09 +02:00
boot_time = time.time()
2024-07-17 18:57:51 +02:00
"""
Hi there!
This script is a REST API server that uses the ultimateALPR SDK to process images and return the license plate
information. The server is created using Flask and the ultimateALPR SDK is used to process the images.
See the README.md file for more information on how to run this script.
"""
# Load configuration from a JSON file or environment variables
CONFIG_PATH = os.path.join(bundle_dir,
'config.json') # TODO: store config file outside of bundle (to avoid compilation by users)
if os.path.exists(CONFIG_PATH):
with open(CONFIG_PATH, 'r') as config_file:
JSON_CONFIG = json.load(config_file)
else:
JSON_CONFIG = {
"assets_folder": os.path.join(bundle_dir, "assets"),
"charset": "latin",
"car_noplate_detect_enabled": False,
"ienv_enabled": False,
"openvino_enabled": True,
"openvino_device": "CPU",
"npu_enabled": False,
"klass_lpci_enabled": False,
"klass_vcr_enabled": False,
"klass_vmmr_enabled": False,
"klass_vbsr_enabled": False,
"license_token_file": "",
"license_token_data": "",
"debug_level": "fatal",
"debug_write_input_image_enabled": False,
"debug_internal_data_path": ".",
"num_threads": -1,
"gpgpu_enabled": True,
"max_latency": -1,
"klass_vcr_gamma": 1.5,
"detect_roi": [0, 0, 0, 0],
"detect_minscore": 0.35,
"car_noplate_detect_min_score": 0.8,
"pyramidal_search_enabled": False,
"pyramidal_search_sensitivity": 0.38,
"pyramidal_search_minscore": 0.8,
"pyramidal_search_min_image_size_inpixels": 800,
"recogn_rectify_enabled": True,
"recogn_minscore": 0.4,
"recogn_score_type": "min"
}
2024-07-17 18:57:51 +02:00
IMAGE_TYPES_MAPPING = {
'RGB': ultimateAlprSdk.ULTALPR_SDK_IMAGE_TYPE_RGB24,
'RGBA': ultimateAlprSdk.ULTALPR_SDK_IMAGE_TYPE_RGBA32,
'L': ultimateAlprSdk.ULTALPR_SDK_IMAGE_TYPE_Y
}
2024-07-30 11:31:12 +02:00
config = json.dumps(JSON_CONFIG)
2024-07-17 18:57:51 +02:00
2024-07-30 11:31:12 +02:00
def start_backend_loop():
global boot_time, counter
2024-07-30 11:31:12 +02:00
2024-08-01 11:47:01 +02:00
while True:
load_engine()
2024-07-30 11:31:12 +02:00
2024-08-01 11:47:01 +02:00
# loop for about an hour or 3000 requests then reload the engine (fix for trial license)
while counter < 3000 and time.time() - boot_time < 60 * 60:
# every 120 sec
if int(time.time()) % 120 == 0:
if not is_engine_loaded():
unload_engine() # just in case
load_engine()
time.sleep(1)
unload_engine()
# Reset counter and boot_time to restart the loop
with counter_lock:
counter = 0
2024-08-01 11:47:01 +02:00
boot_time = time.time()
2024-07-30 11:31:12 +02:00
def is_engine_loaded():
# hacky way to check if the engine is loaded cause the SDK doesn't provide a method for it
return ultimateAlprSdk.UltAlprSdkEngine_requestRuntimeLicenseKey().isOK()
def load_engine():
result = ultimateAlprSdk.UltAlprSdkEngine_init(config)
if not result.isOK():
raise RuntimeError("Init failed: %s" % result.phrase())
2024-07-17 18:57:51 +02:00
def unload_engine():
result = ultimateAlprSdk.UltAlprSdkEngine_deInit()
if not result.isOK():
raise RuntimeError("DeInit failed: %s" % result.phrase())
def process_image(image: Image) -> str:
global counter
with counter_lock:
counter += 1
2024-07-17 18:57:51 +02:00
width, height = image.size
if image.mode in IMAGE_TYPES_MAPPING:
image_type = IMAGE_TYPES_MAPPING[image.mode]
else:
raise ValueError("Invalid mode: %s" % image.mode)
result = ultimateAlprSdk.UltAlprSdkEngine_process(
image_type,
2024-07-17 22:31:22 +02:00
image.tobytes(),
2024-07-17 18:57:51 +02:00
width,
height,
0, # stride
2024-07-17 22:31:22 +02:00
1 # exifOrientation
2024-07-17 18:57:51 +02:00
)
if not result.isOK():
raise RuntimeError("Process failed: %s" % result.phrase())
else:
return result.json()
def create_rest_server_flask():
app = Flask(__name__, template_folder=os.path.join(bundle_dir, 'templates'))
2024-07-17 18:57:51 +02:00
2024-07-17 22:31:22 +02:00
@app.route('/v1/image/alpr', methods=['POST'])
def alpr():
2024-07-22 22:38:54 +02:00
"""
The function receives an image and processes it using the ultimateALPR SDK.
Parameters:
- upload: The image to be processed
- grid_size: The number of cells to split the image into (e.g. 4)
- wanted_cells: The cells to process in the grid separated by commas (e.g. 1,2,3,4) (max: grid_size²)
"""
2024-07-17 22:31:22 +02:00
interference = time.time()
try:
if 'upload' not in request.files:
return jsonify({'error': 'No image found'}), 400
grid_size = int(request.form.get('grid_size', 3))
wanted_cells = request.form.get('wanted_cells')
if wanted_cells:
wanted_cells = [int(cell) for cell in wanted_cells.split(',')]
else:
wanted_cells = list(range(1, grid_size * grid_size + 1))
2024-07-17 22:31:22 +02:00
image = request.files['upload']
if image.filename == '':
return jsonify({'error': 'No selected file'}), 400
2024-07-17 22:31:22 +02:00
image = Image.open(image)
result = process_image(image)
result = convert_to_cpai_compatible(result)
2024-07-17 22:31:22 +02:00
if not result['predictions']:
logger.debug("No plate found in the image, attempting to split the image")
predictions_found = find_best_plate_with_grid_split(image, grid_size, wanted_cells)
2024-07-17 22:31:22 +02:00
if predictions_found:
result['predictions'].append(max(predictions_found, key=lambda x: x['confidence']))
2024-07-17 22:31:22 +02:00
# Add the isolated plate image to the result
if result['predictions']:
isolated_plate_image = isolate_plate_in_image(image, result['predictions'][0])
result['image'] = f"data:image/png;base64,{image_to_base64(isolated_plate_image, compress=True)}"
result['processMs'] = round((time.time() - interference) * 1000, 2)
result['inferenceMs'] = result['processMs']
return jsonify(result)
except Exception as e:
logger.error(f"Error processing image: {e}")
logger.error(traceback.format_exc())
return jsonify({'error': 'Error processing image'}), 500
@app.route('/v1/image/alpr_grid_debug', methods=['POST'])
def alpr_grid_debug():
"""
The function receives an image and returns it with the grid overlayed on it (for debugging purposes).
Parameters:
- upload: The image to be processed
- grid_size: The number of cells to split the image into (e.g. 4)
- wanted_cells: The cells to process in the grid separated by commas (e.g. 1,2,3,4) (max: grid_size²)
Returns:
- The image with the grid overlayed on it
"""
try:
if 'upload' not in request.files:
return jsonify({'error': 'No image found'}), 400
grid_size = int(request.form.get('grid_size', 3))
wanted_cells = request.form.get('wanted_cells')
if wanted_cells:
wanted_cells = [int(cell) for cell in wanted_cells.split(',')]
else:
wanted_cells = list(range(1, grid_size * grid_size + 1))
image = request.files['upload']
if image.filename == '':
return jsonify({'error': 'No selected file'}), 400
image = Image.open(image)
image = draw_grid_and_cell_numbers_on_image(image, grid_size, wanted_cells)
image_base64 = image_to_base64(image, compress=True)
result = {
"image": f"data:image/png;base64,{image_base64}"
}
return jsonify(result)
except Exception as e:
logger.error(f"Error processing image: {e}")
logger.error(traceback.format_exc())
return jsonify({'error': 'Error processing image'}), 500
2024-07-17 18:57:51 +02:00
2024-07-17 21:14:01 +02:00
@app.route('/')
def index():
return render_template('index.html')
2024-07-17 18:57:51 +02:00
return app
def convert_to_cpai_compatible(result):
result = json.loads(result)
response = {
'success': "true",
'processMs': result['duration'],
'inferenceMs': result['duration'],
'predictions': [],
'message': '',
'moduleId': 'ALPR',
'moduleName': 'License Plate Reader',
'code': 200,
'command': 'alpr',
'requestId': 'null',
'inferenceDevice': 'none',
'analysisRoundTripMs': 0,
'processedBy': 'none',
'timestamp': ''
}
if 'plates' in result:
plates = result['plates']
for plate in plates:
warpedBox = plate['warpedBox']
x_coords = warpedBox[0::2]
y_coords = warpedBox[1::2]
x_min = min(x_coords)
x_max = max(x_coords)
y_min = min(y_coords)
y_max = max(y_coords)
response['predictions'].append({
2024-07-17 19:19:26 +02:00
'confidence': plate['confidences'][0] / 100,
2024-07-17 18:57:51 +02:00
'label': "Plate: " + plate['text'],
'plate': plate['text'],
'x_min': x_min,
'x_max': x_max,
'y_min': y_min,
'y_max': y_max
})
return response
def draw_grid_and_cell_numbers_on_image(image: Image, grid_size: int = 3, wanted_cells: list = None) -> Image:
if grid_size < 1:
grid_size = 1
if wanted_cells is None:
wanted_cells = list(range(1, grid_size * grid_size + 1))
width, height = image.size
cell_width = width // grid_size
cell_height = height // grid_size
draw = ImageDraw.Draw(image)
font = ImageFont.truetype(os.path.join(bundle_dir, 'assets', 'fonts', 'GlNummernschildEng-XgWd.ttf'),
image.size[0] // 10)
for cell_index in range(1, grid_size * grid_size + 1):
row = (cell_index - 1) // grid_size
col = (cell_index - 1) % grid_size
left = col * cell_width
upper = row * cell_height
right = left + cell_width
lower = upper + cell_height
if cell_index in wanted_cells:
draw.rectangle([left, upper, right, lower], outline="red", width=4)
draw.text((left + 5, upper + 5), str(cell_index), fill="red", font=font)
return image
def find_best_plate_with_grid_split(image: Image, grid_size: int = 3, wanted_cells: list = None):
if grid_size < 1:
logger.debug("Grid size < 1, skipping split")
return []
2024-07-17 22:46:00 +02:00
if wanted_cells is None:
2024-07-22 22:38:54 +02:00
wanted_cells = list(range(1, grid_size * grid_size + 1))
2024-07-17 22:46:00 +02:00
predictions_found = []
width, height = image.size
2024-07-22 22:38:54 +02:00
cell_width = width // grid_size
cell_height = height // grid_size
2024-07-17 22:46:00 +02:00
2024-07-22 22:38:54 +02:00
for cell_index in range(1, grid_size * grid_size + 1):
row = (cell_index - 1) // grid_size
col = (cell_index - 1) % grid_size
2024-07-17 22:46:00 +02:00
left = col * cell_width
upper = row * cell_height
right = left + cell_width
lower = upper + cell_height
if cell_index in wanted_cells:
cell_image = image.crop((left, upper, right, lower))
result_cell = json.loads(process_image(cell_image))
if 'plates' in result_cell:
for plate in result_cell['plates']:
warpedBox = plate['warpedBox']
x_coords = warpedBox[0::2]
y_coords = warpedBox[1::2]
x_min = min(x_coords) + left
x_max = max(x_coords) + left
y_min = min(y_coords) + upper
y_max = max(y_coords) + upper
predictions_found.append({
'confidence': plate['confidences'][0] / 100,
'label': "Plate: " + plate['text'],
'plate': plate['text'],
'x_min': x_min,
'x_max': x_max,
'y_min': y_min,
'y_max': y_max
})
return predictions_found
def isolate_plate_in_image(image: Image, plate: dict) -> Image:
x_min = plate['x_min']
x_max = plate['x_max']
y_min = plate['y_min']
y_max = plate['y_max']
offset = 10
image = image.crop((max(0, x_min - offset), max(0, y_min - offset), min(image.size[0], x_max + offset),
min(image.size[1], y_max + offset)))
image = image.resize((int(image.size[0] * 3), int(image.size[1] * 3)), resample=Image.Resampling.LANCZOS)
return image
def image_to_base64(img: Image, compress=False):
"""Convert a Pillow image to a base64-encoded string."""
buffered = io.BytesIO()
if compress:
img = img.resize((int(img.size[0] / 2), int(img.size[1] / 2)))
img.save(buffered, format="WEBP", quality=35, lossless=False)
else:
img.save(buffered, format="WEBP")
print(buffered.__sizeof__())
return base64.b64encode(buffered.getvalue()).decode('utf-8')
2024-07-17 18:57:51 +02:00
if __name__ == '__main__':
2024-08-01 11:47:01 +02:00
engine_thread = threading.Thread(target=start_backend_loop, daemon=True)
engine_thread.start()
2024-07-17 18:57:51 +02:00
app = create_rest_server_flask()
app.run(host='0.0.0.0', port=5000)
unload_engine()