mirror of
https://github.com/xuebinqin/DIS.git
synced 2024-11-26 00:33:43 +01:00
Modify inference.py
This commit is contained in:
parent
996c9495d4
commit
f3837183a3
@ -30,23 +30,24 @@ if __name__ == "__main__":
|
||||
net.load_state_dict(torch.load(model_path,map_location="cpu"))
|
||||
net.eval()
|
||||
im_list = glob(dataset_path+"/*.jpg")+glob(dataset_path+"/*.JPG")+glob(dataset_path+"/*.jpeg")+glob(dataset_path+"/*.JPEG")+glob(dataset_path+"/*.png")+glob(dataset_path+"/*.PNG")+glob(dataset_path+"/*.bmp")+glob(dataset_path+"/*.BMP")+glob(dataset_path+"/*.tiff")+glob(dataset_path+"/*.TIFF")
|
||||
for i, im_path in tqdm(enumerate(im_list), total=len(im_list)):
|
||||
print("im_path: ", im_path)
|
||||
im = io.imread(im_path)
|
||||
if len(im.shape) < 3:
|
||||
im = im[:, :, np.newaxis]
|
||||
im_shp=im.shape[0:2]
|
||||
im_tensor = torch.tensor(im, dtype=torch.float32).permute(2,0,1)
|
||||
im_tensor = F.upsample(torch.unsqueeze(im_tensor,0), input_size, mode="bilinear").type(torch.uint8)
|
||||
image = torch.divide(im_tensor,255.0)
|
||||
image = normalize(image,[0.5,0.5,0.5],[1.0,1.0,1.0])
|
||||
with torch.no_grad():
|
||||
for i, im_path in tqdm(enumerate(im_list), total=len(im_list)):
|
||||
print("im_path: ", im_path)
|
||||
im = io.imread(im_path)
|
||||
if len(im.shape) < 3:
|
||||
im = im[:, :, np.newaxis]
|
||||
im_shp=im.shape[0:2]
|
||||
im_tensor = torch.tensor(im, dtype=torch.float32).permute(2,0,1)
|
||||
im_tensor = F.upsample(torch.unsqueeze(im_tensor,0), input_size, mode="bilinear").type(torch.uint8)
|
||||
image = torch.divide(im_tensor,255.0)
|
||||
image = normalize(image,[0.5,0.5,0.5],[1.0,1.0,1.0])
|
||||
|
||||
if torch.cuda.is_available():
|
||||
image=image.cuda()
|
||||
result=net(image)
|
||||
result=torch.squeeze(F.upsample(result[0][0],im_shp,mode='bilinear'),0)
|
||||
ma = torch.max(result)
|
||||
mi = torch.min(result)
|
||||
result = (result-mi)/(ma-mi)
|
||||
im_name=im_path.split('/')[-1].split('.')[0]
|
||||
io.imsave(os.path.join(result_path,im_name+".png"),(result*255).permute(1,2,0).cpu().data.numpy().astype(np.uint8))
|
||||
if torch.cuda.is_available():
|
||||
image=image.cuda()
|
||||
result=net(image)
|
||||
result=torch.squeeze(F.upsample(result[0][0],im_shp,mode='bilinear'),0)
|
||||
ma = torch.max(result)
|
||||
mi = torch.min(result)
|
||||
result = (result-mi)/(ma-mi)
|
||||
im_name=im_path.split('/')[-1].split('.')[0]
|
||||
io.imsave(os.path.join(result_path,im_name+".png"),(result*255).permute(1,2,0).cpu().data.numpy().astype(np.uint8))
|
||||
|
Loading…
Reference in New Issue
Block a user