diff --git a/IS-Net/Inference.py b/IS-Net/Inference.py index 3e6fae8..0b2907d 100644 --- a/IS-Net/Inference.py +++ b/IS-Net/Inference.py @@ -30,23 +30,24 @@ if __name__ == "__main__": net.load_state_dict(torch.load(model_path,map_location="cpu")) net.eval() im_list = glob(dataset_path+"/*.jpg")+glob(dataset_path+"/*.JPG")+glob(dataset_path+"/*.jpeg")+glob(dataset_path+"/*.JPEG")+glob(dataset_path+"/*.png")+glob(dataset_path+"/*.PNG")+glob(dataset_path+"/*.bmp")+glob(dataset_path+"/*.BMP")+glob(dataset_path+"/*.tiff")+glob(dataset_path+"/*.TIFF") - for i, im_path in tqdm(enumerate(im_list), total=len(im_list)): - print("im_path: ", im_path) - im = io.imread(im_path) - if len(im.shape) < 3: - im = im[:, :, np.newaxis] - im_shp=im.shape[0:2] - im_tensor = torch.tensor(im, dtype=torch.float32).permute(2,0,1) - im_tensor = F.upsample(torch.unsqueeze(im_tensor,0), input_size, mode="bilinear").type(torch.uint8) - image = torch.divide(im_tensor,255.0) - image = normalize(image,[0.5,0.5,0.5],[1.0,1.0,1.0]) + with torch.no_grad(): + for i, im_path in tqdm(enumerate(im_list), total=len(im_list)): + print("im_path: ", im_path) + im = io.imread(im_path) + if len(im.shape) < 3: + im = im[:, :, np.newaxis] + im_shp=im.shape[0:2] + im_tensor = torch.tensor(im, dtype=torch.float32).permute(2,0,1) + im_tensor = F.upsample(torch.unsqueeze(im_tensor,0), input_size, mode="bilinear").type(torch.uint8) + image = torch.divide(im_tensor,255.0) + image = normalize(image,[0.5,0.5,0.5],[1.0,1.0,1.0]) - if torch.cuda.is_available(): - image=image.cuda() - result=net(image) - result=torch.squeeze(F.upsample(result[0][0],im_shp,mode='bilinear'),0) - ma = torch.max(result) - mi = torch.min(result) - result = (result-mi)/(ma-mi) - im_name=im_path.split('/')[-1].split('.')[0] - io.imsave(os.path.join(result_path,im_name+".png"),(result*255).permute(1,2,0).cpu().data.numpy().astype(np.uint8)) + if torch.cuda.is_available(): + image=image.cuda() + result=net(image) + result=torch.squeeze(F.upsample(result[0][0],im_shp,mode='bilinear'),0) + ma = torch.max(result) + mi = torch.min(result) + result = (result-mi)/(ma-mi) + im_name=im_path.split('/')[-1].split('.')[0] + io.imsave(os.path.join(result_path,im_name+".png"),(result*255).permute(1,2,0).cpu().data.numpy().astype(np.uint8))