2022-08-16 12:10:30 +02:00
|
|
|
import os
|
|
|
|
import time
|
|
|
|
import numpy as np
|
|
|
|
from skimage import io
|
|
|
|
import time
|
|
|
|
from glob import glob
|
|
|
|
from tqdm import tqdm
|
|
|
|
|
|
|
|
import torch, gc
|
|
|
|
import torch.nn as nn
|
|
|
|
from torch.autograd import Variable
|
|
|
|
import torch.optim as optim
|
|
|
|
import torch.nn.functional as F
|
|
|
|
from torchvision.transforms.functional import normalize
|
|
|
|
|
|
|
|
from models import *
|
|
|
|
|
|
|
|
|
|
|
|
if __name__ == "__main__":
|
2022-08-21 21:37:16 +02:00
|
|
|
dataset_path="../demo_datasets/your_dataset" #Your dataset path
|
|
|
|
model_path="../saved_models/IS-Net/isnet-general-use.pth" # the model path
|
|
|
|
result_path="../demo_datasets/your_dataset_result" #The folder path that you want to save the results
|
2022-08-16 12:10:30 +02:00
|
|
|
input_size=[1024,1024]
|
|
|
|
net=ISNetDIS()
|
|
|
|
|
|
|
|
if torch.cuda.is_available():
|
|
|
|
net.load_state_dict(torch.load(model_path))
|
|
|
|
net=net.cuda()
|
|
|
|
else:
|
|
|
|
net.load_state_dict(torch.load(model_path,map_location="cpu"))
|
2022-08-20 17:10:44 +02:00
|
|
|
net.eval()
|
2022-08-21 20:33:38 +02:00
|
|
|
im_list = glob(dataset_path+"/*.jpg")+glob(dataset_path+"/*.JPG")+glob(dataset_path+"/*.jpeg")+glob(dataset_path+"/*.JPEG")+glob(dataset_path+"/*.png")+glob(dataset_path+"/*.PNG")+glob(dataset_path+"/*.bmp")+glob(dataset_path+"/*.BMP")+glob(dataset_path+"/*.tiff")+glob(dataset_path+"/*.TIFF")
|
2023-01-26 09:10:39 +01:00
|
|
|
with torch.no_grad():
|
|
|
|
for i, im_path in tqdm(enumerate(im_list), total=len(im_list)):
|
|
|
|
print("im_path: ", im_path)
|
|
|
|
im = io.imread(im_path)
|
|
|
|
if len(im.shape) < 3:
|
|
|
|
im = im[:, :, np.newaxis]
|
|
|
|
im_shp=im.shape[0:2]
|
|
|
|
im_tensor = torch.tensor(im, dtype=torch.float32).permute(2,0,1)
|
|
|
|
im_tensor = F.upsample(torch.unsqueeze(im_tensor,0), input_size, mode="bilinear").type(torch.uint8)
|
|
|
|
image = torch.divide(im_tensor,255.0)
|
|
|
|
image = normalize(image,[0.5,0.5,0.5],[1.0,1.0,1.0])
|
2022-08-20 17:10:44 +02:00
|
|
|
|
2023-01-26 09:10:39 +01:00
|
|
|
if torch.cuda.is_available():
|
|
|
|
image=image.cuda()
|
|
|
|
result=net(image)
|
|
|
|
result=torch.squeeze(F.upsample(result[0][0],im_shp,mode='bilinear'),0)
|
|
|
|
ma = torch.max(result)
|
|
|
|
mi = torch.min(result)
|
|
|
|
result = (result-mi)/(ma-mi)
|
|
|
|
im_name=im_path.split('/')[-1].split('.')[0]
|
|
|
|
io.imsave(os.path.join(result_path,im_name+".png"),(result*255).permute(1,2,0).cpu().data.numpy().astype(np.uint8))
|