import statistics from typing import List, Tuple from config import SYNC_CONFIG from .types import AnalysisPoint class Analyzer: @staticmethod def filter_outliers(points: List[AnalysisPoint]) -> List[AnalysisPoint]: """IQR Filter to remove bad matches.""" if len(points) < 4: return points offsets = sorted([p.offset_ms for p in points]) q1 = offsets[len(offsets) // 4] q3 = offsets[3 * len(offsets) // 4] iqr = q3 - q1 lower, upper = q1 - (1.5 * iqr), q3 + (1.5 * iqr) return [p for p in points if lower <= p.offset_ms <= upper] @staticmethod def calculate_weighted_regression(points: List[AnalysisPoint]) -> Tuple[float, float, float]: """Returns (Slope, Intercept, R2) weighted by match confidence.""" n = len(points) if n < 2: return 1.0, 0.0, 0.0 x = [p.timestamp_ms for p in points] y = [p.timestamp_ms + p.offset_ms for p in points] w = [p.match_count for p in points] sum_w = sum(w) sum_wx = sum(wi * xi for wi, xi in zip(w, x)) sum_wy = sum(wi * yi for wi, yi in zip(w, y)) sum_wxx = sum(wi * xi * xi for wi, xi in zip(w, x)) sum_wxy = sum(wi * xi * yi for wi, xi, yi in zip(w, x, y)) denom = sum_w * sum_wxx - sum_wx * sum_wx if denom == 0: return 1.0, 0.0, 0.0 slope = (sum_w * sum_wxy - sum_wx * sum_wy) / denom intercept = (sum_wy - slope * sum_wx) / sum_w # Unweighted R2 y_mean = sum(y) / n ss_tot = sum((yi - y_mean) ** 2 for yi in y) ss_res = sum((yi - (slope * xi + intercept)) ** 2 for xi, yi in zip(x, y)) r2 = 1 - (ss_res / ss_tot) if ss_tot != 0 else 0 return slope, intercept, r2 @staticmethod def smooth_points(points: List[AnalysisPoint]) -> List[AnalysisPoint]: """Weighted smoothing for Elastic mode.""" if len(points) < 3: return points points.sort(key=lambda p: p.timestamp_ms) smoothed = [points[0]] for i in range(1, len(points) - 1): prev, curr, next_p = points[i - 1], points[i], points[i + 1] avg_offset = (prev.offset_ms * 0.25) + (curr.offset_ms * 0.5) + (next_p.offset_ms * 0.25) smoothed.append(AnalysisPoint(curr.timestamp_ms, avg_offset, curr.match_count)) smoothed.append(points[-1]) return smoothed @staticmethod def get_interpolated_offset(target_ms: int, anchors: List[AnalysisPoint]) -> float: if target_ms <= anchors[0].timestamp_ms: return anchors[0].offset_ms if target_ms >= anchors[-1].timestamp_ms: return anchors[-1].offset_ms for i in range(len(anchors) - 1): p1, p2 = anchors[i], anchors[i + 1] if p1.timestamp_ms <= target_ms < p2.timestamp_ms: alpha = (target_ms - p1.timestamp_ms) / (p2.timestamp_ms - p1.timestamp_ms) return p1.offset_ms + (alpha * (p2.offset_ms - p1.offset_ms)) return anchors[0].offset_ms @staticmethod def decide_sync_strategy(points: List[AnalysisPoint]) -> str: clean_points = Analyzer.filter_outliers(points) if len(clean_points) < 2: return 'CONSTANT' offsets = [p.offset_ms for p in clean_points] std_dev = statistics.stdev(offsets) if len(offsets) > 1 else 0 print(f"\nAnalysis Metrics (Cleaned Data):") print(f" Spread: {max(offsets) - min(offsets)}ms") print(f" StdDev: {std_dev:.2f}ms") if std_dev < SYNC_CONFIG['jitter_tolerance_ms']: print(" Decision: Offsets are stable (Low Jitter).") return 'CONSTANT' if not SYNC_CONFIG['fix_drift']: print(" Decision: Drift detected but 'fix_drift' is False.") return 'CONSTANT' slope, _, r2 = Analyzer.calculate_weighted_regression(clean_points) drift_per_hour = abs(slope - 1.0) * 3600000 print(f" Linear Fit: R2={r2:.4f}, Slope={slope:.6f} (Drift: {drift_per_hour:.0f}ms/hr)") if r2 >= SYNC_CONFIG['linear_r2_threshold'] and drift_per_hour > 100: print(" Decision: Linear drift detected.") return 'LINEAR' print(" Decision: Variable/irregular drift.") return 'ELASTIC'