feat: init
This commit is contained in:
19
config.py
Normal file
19
config.py
Normal file
@@ -0,0 +1,19 @@
|
|||||||
|
# config.py
|
||||||
|
|
||||||
|
SYNC_CONFIG = {
|
||||||
|
# Sampling
|
||||||
|
"sample_count": 20,
|
||||||
|
"scan_duration_sec": 45,
|
||||||
|
|
||||||
|
# Matching
|
||||||
|
"min_match_count": 3,
|
||||||
|
"min_match_score": 0.70,
|
||||||
|
"search_window_sec": 30,
|
||||||
|
|
||||||
|
# Logic & Decision Thresholds
|
||||||
|
"fix_drift": True,
|
||||||
|
"correction_method": "auto", # Options: "auto", "constant", "force_elastic"
|
||||||
|
"jitter_tolerance_ms": 300,
|
||||||
|
"min_drift_slope": 0.00005,
|
||||||
|
"linear_r2_threshold": 0.80,
|
||||||
|
}
|
||||||
0
core/__init__.py
Normal file
0
core/__init__.py
Normal file
104
core/analysis.py
Normal file
104
core/analysis.py
Normal file
@@ -0,0 +1,104 @@
|
|||||||
|
import statistics
|
||||||
|
from typing import List, Tuple
|
||||||
|
|
||||||
|
from config import SYNC_CONFIG
|
||||||
|
from .types import AnalysisPoint
|
||||||
|
|
||||||
|
|
||||||
|
class Analyzer:
|
||||||
|
@staticmethod
|
||||||
|
def filter_outliers(points: List[AnalysisPoint]) -> List[AnalysisPoint]:
|
||||||
|
"""IQR Filter to remove bad matches."""
|
||||||
|
if len(points) < 4: return points
|
||||||
|
offsets = sorted([p.offset_ms for p in points])
|
||||||
|
q1 = offsets[len(offsets) // 4]
|
||||||
|
q3 = offsets[3 * len(offsets) // 4]
|
||||||
|
iqr = q3 - q1
|
||||||
|
lower, upper = q1 - (1.5 * iqr), q3 + (1.5 * iqr)
|
||||||
|
return [p for p in points if lower <= p.offset_ms <= upper]
|
||||||
|
|
||||||
|
@staticmethod
|
||||||
|
def calculate_weighted_regression(points: List[AnalysisPoint]) -> Tuple[float, float, float]:
|
||||||
|
"""Returns (Slope, Intercept, R2) weighted by match confidence."""
|
||||||
|
n = len(points)
|
||||||
|
if n < 2: return 1.0, 0.0, 0.0
|
||||||
|
|
||||||
|
x = [p.timestamp_ms for p in points]
|
||||||
|
y = [p.timestamp_ms + p.offset_ms for p in points]
|
||||||
|
w = [p.match_count for p in points]
|
||||||
|
|
||||||
|
sum_w = sum(w)
|
||||||
|
sum_wx = sum(wi * xi for wi, xi in zip(w, x))
|
||||||
|
sum_wy = sum(wi * yi for wi, yi in zip(w, y))
|
||||||
|
sum_wxx = sum(wi * xi * xi for wi, xi in zip(w, x))
|
||||||
|
sum_wxy = sum(wi * xi * yi for wi, xi, yi in zip(w, x, y))
|
||||||
|
|
||||||
|
denom = sum_w * sum_wxx - sum_wx * sum_wx
|
||||||
|
if denom == 0: return 1.0, 0.0, 0.0
|
||||||
|
|
||||||
|
slope = (sum_w * sum_wxy - sum_wx * sum_wy) / denom
|
||||||
|
intercept = (sum_wy - slope * sum_wx) / sum_w
|
||||||
|
|
||||||
|
# Unweighted R2
|
||||||
|
y_mean = sum(y) / n
|
||||||
|
ss_tot = sum((yi - y_mean) ** 2 for yi in y)
|
||||||
|
ss_res = sum((yi - (slope * xi + intercept)) ** 2 for xi, yi in zip(x, y))
|
||||||
|
r2 = 1 - (ss_res / ss_tot) if ss_tot != 0 else 0
|
||||||
|
|
||||||
|
return slope, intercept, r2
|
||||||
|
|
||||||
|
@staticmethod
|
||||||
|
def smooth_points(points: List[AnalysisPoint]) -> List[AnalysisPoint]:
|
||||||
|
"""Weighted smoothing for Elastic mode."""
|
||||||
|
if len(points) < 3: return points
|
||||||
|
points.sort(key=lambda p: p.timestamp_ms)
|
||||||
|
smoothed = [points[0]]
|
||||||
|
for i in range(1, len(points) - 1):
|
||||||
|
prev, curr, next_p = points[i - 1], points[i], points[i + 1]
|
||||||
|
avg_offset = (prev.offset_ms * 0.25) + (curr.offset_ms * 0.5) + (next_p.offset_ms * 0.25)
|
||||||
|
smoothed.append(AnalysisPoint(curr.timestamp_ms, avg_offset, curr.match_count))
|
||||||
|
smoothed.append(points[-1])
|
||||||
|
return smoothed
|
||||||
|
|
||||||
|
@staticmethod
|
||||||
|
def get_interpolated_offset(target_ms: int, anchors: List[AnalysisPoint]) -> float:
|
||||||
|
if target_ms <= anchors[0].timestamp_ms: return anchors[0].offset_ms
|
||||||
|
if target_ms >= anchors[-1].timestamp_ms: return anchors[-1].offset_ms
|
||||||
|
|
||||||
|
for i in range(len(anchors) - 1):
|
||||||
|
p1, p2 = anchors[i], anchors[i + 1]
|
||||||
|
if p1.timestamp_ms <= target_ms < p2.timestamp_ms:
|
||||||
|
alpha = (target_ms - p1.timestamp_ms) / (p2.timestamp_ms - p1.timestamp_ms)
|
||||||
|
return p1.offset_ms + (alpha * (p2.offset_ms - p1.offset_ms))
|
||||||
|
return anchors[0].offset_ms
|
||||||
|
|
||||||
|
@staticmethod
|
||||||
|
def decide_sync_strategy(points: List[AnalysisPoint]) -> str:
|
||||||
|
clean_points = Analyzer.filter_outliers(points)
|
||||||
|
if len(clean_points) < 2: return 'CONSTANT'
|
||||||
|
|
||||||
|
offsets = [p.offset_ms for p in clean_points]
|
||||||
|
std_dev = statistics.stdev(offsets) if len(offsets) > 1 else 0
|
||||||
|
|
||||||
|
print(f"\nAnalysis Metrics (Cleaned Data):")
|
||||||
|
print(f" Spread: {max(offsets) - min(offsets)}ms")
|
||||||
|
print(f" StdDev: {std_dev:.2f}ms")
|
||||||
|
|
||||||
|
if std_dev < SYNC_CONFIG['jitter_tolerance_ms']:
|
||||||
|
print(" Decision: Offsets are stable (Low Jitter).")
|
||||||
|
return 'CONSTANT'
|
||||||
|
|
||||||
|
if not SYNC_CONFIG['fix_drift']:
|
||||||
|
print(" Decision: Drift detected but 'fix_drift' is False.")
|
||||||
|
return 'CONSTANT'
|
||||||
|
|
||||||
|
slope, _, r2 = Analyzer.calculate_weighted_regression(clean_points)
|
||||||
|
drift_per_hour = abs(slope - 1.0) * 3600000
|
||||||
|
print(f" Linear Fit: R2={r2:.4f}, Slope={slope:.6f} (Drift: {drift_per_hour:.0f}ms/hr)")
|
||||||
|
|
||||||
|
if r2 >= SYNC_CONFIG['linear_r2_threshold'] and drift_per_hour > 100:
|
||||||
|
print(" Decision: Linear drift detected.")
|
||||||
|
return 'LINEAR'
|
||||||
|
|
||||||
|
print(" Decision: Variable/irregular drift.")
|
||||||
|
return 'ELASTIC'
|
||||||
49
core/matcher.py
Normal file
49
core/matcher.py
Normal file
@@ -0,0 +1,49 @@
|
|||||||
|
import re
|
||||||
|
from difflib import SequenceMatcher
|
||||||
|
from typing import List, Tuple
|
||||||
|
|
||||||
|
from config import SYNC_CONFIG
|
||||||
|
from .types import SubtitleEntry, WhisperSegment
|
||||||
|
|
||||||
|
|
||||||
|
class TextMatcher:
|
||||||
|
@staticmethod
|
||||||
|
def normalize_text(text: str) -> str:
|
||||||
|
return re.sub(r'\s+', ' ', re.sub(r'[^\w\s]', '', text).lower().replace('\n', ' ')).strip()
|
||||||
|
|
||||||
|
@staticmethod
|
||||||
|
def text_similarity(text1: str, text2: str) -> float:
|
||||||
|
n1, n2 = TextMatcher.normalize_text(text1), TextMatcher.normalize_text(text2)
|
||||||
|
if not n1 or not n2: return 0.0
|
||||||
|
return SequenceMatcher(None, n1, n2).ratio()
|
||||||
|
|
||||||
|
@staticmethod
|
||||||
|
def find_matches(subtitles: List[SubtitleEntry], whisper_segments: List[WhisperSegment], chunk_start_ms: int) -> \
|
||||||
|
List[Tuple[SubtitleEntry, int, float]]:
|
||||||
|
matches = []
|
||||||
|
window = SYNC_CONFIG['search_window_sec'] * 1000
|
||||||
|
scan_dur = SYNC_CONFIG['scan_duration_sec'] * 1000
|
||||||
|
|
||||||
|
# Optimization: Pre-filter subtitles
|
||||||
|
relevant_subs = [
|
||||||
|
s for s in subtitles
|
||||||
|
if (chunk_start_ms - window) <= s.start_ms <= (chunk_start_ms + scan_dur + window)
|
||||||
|
]
|
||||||
|
|
||||||
|
for w_seg in whisper_segments:
|
||||||
|
abs_start = w_seg.start_ms + chunk_start_ms
|
||||||
|
best_sub = None
|
||||||
|
best_score = 0.0
|
||||||
|
|
||||||
|
for sub in relevant_subs:
|
||||||
|
if not (abs_start - window <= sub.start_ms <= abs_start + window): continue
|
||||||
|
if len(sub.raw_text) < 3: continue
|
||||||
|
|
||||||
|
score = TextMatcher.text_similarity(sub.raw_text, w_seg.text)
|
||||||
|
if score > best_score:
|
||||||
|
best_score = score
|
||||||
|
best_sub = sub
|
||||||
|
|
||||||
|
if best_sub and best_score >= SYNC_CONFIG['min_match_score']:
|
||||||
|
matches.append((best_sub, abs_start, best_score))
|
||||||
|
return matches
|
||||||
44
core/media.py
Normal file
44
core/media.py
Normal file
@@ -0,0 +1,44 @@
|
|||||||
|
import json
|
||||||
|
import os
|
||||||
|
import subprocess
|
||||||
|
import tempfile
|
||||||
|
|
||||||
|
|
||||||
|
class MediaHandler:
|
||||||
|
@staticmethod
|
||||||
|
def get_media_duration(media_path: str) -> float:
|
||||||
|
cmd = ["ffprobe", "-v", "error", "-show_entries", "format=duration", "-of",
|
||||||
|
"default=noprint_wrappers=1:nokey=1", media_path]
|
||||||
|
try:
|
||||||
|
return float(subprocess.run(cmd, capture_output=True, text=True).stdout.strip())
|
||||||
|
except Exception:
|
||||||
|
return 3600.0
|
||||||
|
|
||||||
|
@staticmethod
|
||||||
|
def get_audio_stream_index(media_path: str, language: str) -> str:
|
||||||
|
lang_map = {'english': 'eng', 'french': 'fre', 'fra': 'fre', 'german': 'ger', 'spanish': 'spa',
|
||||||
|
'italian': 'ita'}
|
||||||
|
target_iso = lang_map.get(language.lower(), 'eng')
|
||||||
|
|
||||||
|
cmd = ["ffprobe", "-v", "quiet", "-print_format", "json", "-show_streams", "-select_streams", "a", media_path]
|
||||||
|
try:
|
||||||
|
data = json.loads(subprocess.run(cmd, capture_output=True, text=True).stdout)
|
||||||
|
for i, stream in enumerate(data.get('streams', [])):
|
||||||
|
if stream.get('tags', {}).get('language', 'und').lower() == target_iso:
|
||||||
|
return f"0:a:{i}"
|
||||||
|
return "0:a:0"
|
||||||
|
except Exception:
|
||||||
|
return "0:a:0"
|
||||||
|
|
||||||
|
@staticmethod
|
||||||
|
def extract_audio_chunk(media_path: str, start_sec: int, duration_sec: int, stream_index: str) -> str:
|
||||||
|
fd, tmp_name = tempfile.mkstemp(suffix=".wav")
|
||||||
|
os.close(fd)
|
||||||
|
|
||||||
|
cmd = [
|
||||||
|
"ffmpeg", "-y", "-ss", str(start_sec), "-i", media_path,
|
||||||
|
"-map", stream_index, "-t", str(duration_sec),
|
||||||
|
"-ac", "1", "-ar", "16000", "-vn", "-loglevel", "error", tmp_name
|
||||||
|
]
|
||||||
|
subprocess.run(cmd, check=True)
|
||||||
|
return tmp_name
|
||||||
49
core/subtitles.py
Normal file
49
core/subtitles.py
Normal file
@@ -0,0 +1,49 @@
|
|||||||
|
import os
|
||||||
|
import re
|
||||||
|
from typing import List
|
||||||
|
|
||||||
|
from .types import SubtitleEntry
|
||||||
|
|
||||||
|
|
||||||
|
class SubtitleHandler:
|
||||||
|
@staticmethod
|
||||||
|
def parse_time(t):
|
||||||
|
h, m, s, ms = int(t[:2]), int(t[3:5]), int(t[6:8]), int(t[9:])
|
||||||
|
return h * 3600000 + m * 60000 + s * 1000 + ms
|
||||||
|
|
||||||
|
@staticmethod
|
||||||
|
def format_time(ms):
|
||||||
|
ms = max(0, ms)
|
||||||
|
h, r = divmod(ms, 3600000)
|
||||||
|
m, r = divmod(r, 60000)
|
||||||
|
s, ms = divmod(r, 1000)
|
||||||
|
return f"{h:02}:{m:02}:{s:02},{ms:03}"
|
||||||
|
|
||||||
|
@staticmethod
|
||||||
|
def parse_srt(filepath: str) -> List[SubtitleEntry]:
|
||||||
|
if not os.path.exists(filepath): return []
|
||||||
|
encodings = ['utf-8-sig', 'utf-8', 'latin-1']
|
||||||
|
content = ""
|
||||||
|
for enc in encodings:
|
||||||
|
try:
|
||||||
|
with open(filepath, 'r', encoding=enc) as f:
|
||||||
|
content = f.read()
|
||||||
|
break
|
||||||
|
except UnicodeDecodeError:
|
||||||
|
continue
|
||||||
|
|
||||||
|
entries = []
|
||||||
|
pattern = re.compile(r'(\d+)\n(\d{2}:\d{2}:\d{2},\d{3}) --> (\d{2}:\d{2}:\d{2},\d{3})\n((?:(?!\r?\n\r?\n).)*)',
|
||||||
|
re.DOTALL)
|
||||||
|
for match in pattern.finditer(content):
|
||||||
|
start = SubtitleHandler.parse_time(match.group(2))
|
||||||
|
end = SubtitleHandler.parse_time(match.group(3))
|
||||||
|
entries.append(SubtitleEntry(int(match.group(1)), start, end, match.group(4).strip()))
|
||||||
|
return entries
|
||||||
|
|
||||||
|
@staticmethod
|
||||||
|
def write_srt(filepath: str, entries: List[SubtitleEntry]):
|
||||||
|
with open(filepath, 'w', encoding='utf-8') as f:
|
||||||
|
for entry in entries:
|
||||||
|
f.write(
|
||||||
|
f"{entry.index}\n{SubtitleHandler.format_time(entry.start_ms)} --> {SubtitleHandler.format_time(entry.end_ms)}\n{entry.raw_text}\n\n")
|
||||||
32
core/types.py
Normal file
32
core/types.py
Normal file
@@ -0,0 +1,32 @@
|
|||||||
|
from dataclasses import dataclass
|
||||||
|
|
||||||
|
|
||||||
|
@dataclass
|
||||||
|
class SubtitleEntry:
|
||||||
|
index: int
|
||||||
|
start_ms: int
|
||||||
|
end_ms: int
|
||||||
|
raw_text: str
|
||||||
|
|
||||||
|
|
||||||
|
@dataclass
|
||||||
|
class WhisperSegment:
|
||||||
|
start_ms: int
|
||||||
|
end_ms: int
|
||||||
|
text: str
|
||||||
|
|
||||||
|
|
||||||
|
@dataclass
|
||||||
|
class AnalysisPoint:
|
||||||
|
timestamp_ms: int
|
||||||
|
offset_ms: int
|
||||||
|
match_count: int
|
||||||
|
|
||||||
|
|
||||||
|
@dataclass
|
||||||
|
class SubtitleInfo:
|
||||||
|
episode_path: str
|
||||||
|
episode_name: str
|
||||||
|
subtitle_path: str
|
||||||
|
episode_language: str
|
||||||
|
subtitles_language: str
|
||||||
169
main.py
Normal file
169
main.py
Normal file
@@ -0,0 +1,169 @@
|
|||||||
|
import os
|
||||||
|
import statistics
|
||||||
|
import sys
|
||||||
|
|
||||||
|
from faster_whisper import WhisperModel
|
||||||
|
|
||||||
|
from config import SYNC_CONFIG
|
||||||
|
from core.analysis import Analyzer
|
||||||
|
from core.matcher import TextMatcher
|
||||||
|
from core.media import MediaHandler
|
||||||
|
from core.subtitles import SubtitleHandler
|
||||||
|
from core.types import SubtitleInfo, WhisperSegment, AnalysisPoint
|
||||||
|
|
||||||
|
|
||||||
|
def parse_bazarr_args(args) -> SubtitleInfo:
|
||||||
|
arg_dict = {}
|
||||||
|
for arg in args[1:]:
|
||||||
|
if '=' in arg:
|
||||||
|
key, value = arg.split('=', 1)
|
||||||
|
arg_dict[key] = value
|
||||||
|
return SubtitleInfo(
|
||||||
|
episode_path=arg_dict.get('episode', ''),
|
||||||
|
episode_name=arg_dict.get('episode_name', 'Unknown'),
|
||||||
|
subtitle_path=arg_dict.get('subtitles', ''),
|
||||||
|
episode_language=arg_dict.get('episode_language', 'English'),
|
||||||
|
subtitles_language=arg_dict.get('subtitles_language', 'English')
|
||||||
|
)
|
||||||
|
|
||||||
|
|
||||||
|
def main():
|
||||||
|
info = parse_bazarr_args(sys.argv)
|
||||||
|
print(f"Target: {info.episode_name}")
|
||||||
|
|
||||||
|
# 1. Init
|
||||||
|
audio_stream = MediaHandler.get_audio_stream_index(info.episode_path, info.episode_language)
|
||||||
|
media_duration = MediaHandler.get_media_duration(info.episode_path)
|
||||||
|
|
||||||
|
print(f"Duration: {int(media_duration // 60)}m. Loading Whisper...")
|
||||||
|
model_name = "base.en" if 'english' in info.episode_language.lower() else "base"
|
||||||
|
whisper = WhisperModel(model_name, device="cpu", compute_type="int8", cpu_threads=4)
|
||||||
|
|
||||||
|
subtitles = SubtitleHandler.parse_srt(info.subtitle_path)
|
||||||
|
if not subtitles:
|
||||||
|
print("Error: Subtitle file is empty.")
|
||||||
|
return
|
||||||
|
|
||||||
|
# 2. Scanning Loop
|
||||||
|
usable_duration = media_duration - 60
|
||||||
|
step = usable_duration / (SYNC_CONFIG['sample_count'] + 1)
|
||||||
|
sample_starts = [30 + (i * step) for i in range(SYNC_CONFIG['sample_count'])]
|
||||||
|
|
||||||
|
raw_points = []
|
||||||
|
print(f"\n--- Scanning {len(sample_starts)} Checkpoints ---")
|
||||||
|
|
||||||
|
for start_sec in sample_starts:
|
||||||
|
print(f"Scanning @ {int(start_sec // 60)}m...", end='', flush=True)
|
||||||
|
audio_file = None
|
||||||
|
try:
|
||||||
|
audio_file = MediaHandler.extract_audio_chunk(
|
||||||
|
info.episode_path, int(start_sec), SYNC_CONFIG['scan_duration_sec'], audio_stream
|
||||||
|
)
|
||||||
|
|
||||||
|
segments, _ = whisper.transcribe(audio_file, vad_filter=True)
|
||||||
|
w_segments = [WhisperSegment(int(s.start * 1000), int(s.end * 1000), s.text) for s in list(segments)]
|
||||||
|
|
||||||
|
matches = TextMatcher.find_matches(subtitles, w_segments, int(start_sec * 1000))
|
||||||
|
if len(matches) >= SYNC_CONFIG['min_match_count']:
|
||||||
|
offsets = [w_time - sub.start_ms for sub, w_time, _ in matches]
|
||||||
|
median_offset = statistics.median(offsets)
|
||||||
|
avg_sub_time = statistics.mean([sub.start_ms for sub, _, _ in matches])
|
||||||
|
raw_points.append(AnalysisPoint(avg_sub_time, median_offset, len(matches)))
|
||||||
|
print(f" Locked: {median_offset:+.0f}ms ({len(matches)} matches)")
|
||||||
|
else:
|
||||||
|
print(f" No Lock")
|
||||||
|
except Exception as e:
|
||||||
|
print(f" Error: {e}")
|
||||||
|
finally:
|
||||||
|
if audio_file and os.path.exists(audio_file):
|
||||||
|
os.unlink(audio_file)
|
||||||
|
|
||||||
|
if not raw_points:
|
||||||
|
print("FAILED: No sync points found.")
|
||||||
|
return
|
||||||
|
|
||||||
|
# 3. Decision
|
||||||
|
raw_points.sort(key=lambda x: x.timestamp_ms)
|
||||||
|
clean_points = Analyzer.filter_outliers(raw_points)
|
||||||
|
|
||||||
|
mode = SYNC_CONFIG['correction_method'].upper()
|
||||||
|
if mode == "AUTO":
|
||||||
|
mode = Analyzer.decide_sync_strategy(raw_points)
|
||||||
|
elif mode == "FORCE_ELASTIC":
|
||||||
|
mode = "ELASTIC"
|
||||||
|
else:
|
||||||
|
mode = "CONSTANT"
|
||||||
|
|
||||||
|
print(f"\n--- SYNC MODE: {mode} ---")
|
||||||
|
|
||||||
|
final_slope = 1.0
|
||||||
|
final_intercept = 0.0
|
||||||
|
final_anchors = []
|
||||||
|
|
||||||
|
if mode == "CONSTANT":
|
||||||
|
final_intercept = statistics.median([p.offset_ms for p in clean_points])
|
||||||
|
print(f"Applying Global Offset: {final_intercept:+.0f} ms")
|
||||||
|
|
||||||
|
elif mode == "LINEAR":
|
||||||
|
final_slope, final_intercept, _ = Analyzer.calculate_weighted_regression(clean_points)
|
||||||
|
print(f"Applying Linear Correction: Slope={final_slope:.6f}, Base={final_intercept:.0f}ms")
|
||||||
|
|
||||||
|
elif mode == "ELASTIC":
|
||||||
|
anchors = Analyzer.smooth_points(clean_points)
|
||||||
|
final_anchors = [AnalysisPoint(0, anchors[0].offset_ms, 0)] + anchors + \
|
||||||
|
[AnalysisPoint(int(media_duration * 1000), anchors[-1].offset_ms, 0)]
|
||||||
|
print("Applying Non-Linear (Elastic) Map.")
|
||||||
|
|
||||||
|
# 4. Apply
|
||||||
|
count = 0
|
||||||
|
for sub in subtitles:
|
||||||
|
new_start, new_end = sub.start_ms, sub.end_ms
|
||||||
|
|
||||||
|
if mode == "CONSTANT":
|
||||||
|
new_start += final_intercept
|
||||||
|
new_end += final_intercept
|
||||||
|
elif mode == "LINEAR":
|
||||||
|
new_start = (sub.start_ms * final_slope) + final_intercept
|
||||||
|
new_end = (sub.end_ms * final_slope) + final_intercept
|
||||||
|
elif mode == "ELASTIC":
|
||||||
|
off = Analyzer.get_interpolated_offset(sub.start_ms, final_anchors)
|
||||||
|
new_start += off
|
||||||
|
new_end += off
|
||||||
|
|
||||||
|
sub.start_ms = max(0, int(new_start))
|
||||||
|
sub.end_ms = max(0, int(new_end))
|
||||||
|
count += 1
|
||||||
|
|
||||||
|
SubtitleHandler.write_srt(info.subtitle_path, subtitles)
|
||||||
|
print(f"Successfully synced {count} lines.")
|
||||||
|
|
||||||
|
|
||||||
|
if __name__ == '__main__':
|
||||||
|
# sys.argv = [
|
||||||
|
# 'sync_script.py',
|
||||||
|
# 'episode=/home/mathieub/Documents/DEV/PycharmProjects/ai-subtitles-sync/test_data/Superman & Lois - S03E01/Superman & Lois - S03E01 - Closer Bluray-1080p.mkv',
|
||||||
|
# 'episode_name=Superman & Lois - S03E01',
|
||||||
|
# 'subtitles=/home/mathieub/Documents/DEV/PycharmProjects/ai-subtitles-sync/test_data/Superman & Lois - S03E01/Superman & Lois - S03E01 - Closer Bluray-1080p.en.hi.srt',
|
||||||
|
# 'episode_language=English',
|
||||||
|
# 'subtitles_language=English'
|
||||||
|
# ]
|
||||||
|
|
||||||
|
# sys.argv = [
|
||||||
|
# 'sync_script.py',
|
||||||
|
# 'episode=/home/mathieub/Documents/DEV/PycharmProjects/ai-subtitles-sync/test_data/Superman & Lois - S03E07/Superman & Lois - S03E07 - Forever And Always Bluray-1080p.mkv',
|
||||||
|
# 'episode_name=Superman & Lois - S03E07',
|
||||||
|
# 'subtitles=/home/mathieub/Documents/DEV/PycharmProjects/ai-subtitles-sync/test_data/Superman & Lois - S03E07/Superman & Lois - S03E07 - Forever And Always Bluray-1080p.en.srt',
|
||||||
|
# 'episode_language=English',
|
||||||
|
# 'subtitles_language=English'
|
||||||
|
# ]
|
||||||
|
|
||||||
|
sys.argv = [
|
||||||
|
'sync_script.py',
|
||||||
|
'episode=/home/mathieub/Documents/DEV/PycharmProjects/ai-subtitles-sync/test_data/Superman & Lois - S03E05/Superman & Lois - S03E05 - Head On Bluray-1080p.mkv',
|
||||||
|
'episode_name=Superman & Lois - S03E05',
|
||||||
|
'subtitles=/home/mathieub/Documents/DEV/PycharmProjects/ai-subtitles-sync/test_data/Superman & Lois - S03E05/Superman & Lois - S03E05 - Head On Bluray-1080p.en.srt',
|
||||||
|
'episode_language=English',
|
||||||
|
'subtitles_language=English'
|
||||||
|
]
|
||||||
|
|
||||||
|
main()
|
||||||
1
requirements.txt
Normal file
1
requirements.txt
Normal file
@@ -0,0 +1 @@
|
|||||||
|
git+https://github.com/absadiki/pywhispercpp
|
||||||
Reference in New Issue
Block a user