feat: init
This commit is contained in:
0
core/__init__.py
Normal file
0
core/__init__.py
Normal file
104
core/analysis.py
Normal file
104
core/analysis.py
Normal file
@@ -0,0 +1,104 @@
|
||||
import statistics
|
||||
from typing import List, Tuple
|
||||
|
||||
from config import SYNC_CONFIG
|
||||
from .types import AnalysisPoint
|
||||
|
||||
|
||||
class Analyzer:
|
||||
@staticmethod
|
||||
def filter_outliers(points: List[AnalysisPoint]) -> List[AnalysisPoint]:
|
||||
"""IQR Filter to remove bad matches."""
|
||||
if len(points) < 4: return points
|
||||
offsets = sorted([p.offset_ms for p in points])
|
||||
q1 = offsets[len(offsets) // 4]
|
||||
q3 = offsets[3 * len(offsets) // 4]
|
||||
iqr = q3 - q1
|
||||
lower, upper = q1 - (1.5 * iqr), q3 + (1.5 * iqr)
|
||||
return [p for p in points if lower <= p.offset_ms <= upper]
|
||||
|
||||
@staticmethod
|
||||
def calculate_weighted_regression(points: List[AnalysisPoint]) -> Tuple[float, float, float]:
|
||||
"""Returns (Slope, Intercept, R2) weighted by match confidence."""
|
||||
n = len(points)
|
||||
if n < 2: return 1.0, 0.0, 0.0
|
||||
|
||||
x = [p.timestamp_ms for p in points]
|
||||
y = [p.timestamp_ms + p.offset_ms for p in points]
|
||||
w = [p.match_count for p in points]
|
||||
|
||||
sum_w = sum(w)
|
||||
sum_wx = sum(wi * xi for wi, xi in zip(w, x))
|
||||
sum_wy = sum(wi * yi for wi, yi in zip(w, y))
|
||||
sum_wxx = sum(wi * xi * xi for wi, xi in zip(w, x))
|
||||
sum_wxy = sum(wi * xi * yi for wi, xi, yi in zip(w, x, y))
|
||||
|
||||
denom = sum_w * sum_wxx - sum_wx * sum_wx
|
||||
if denom == 0: return 1.0, 0.0, 0.0
|
||||
|
||||
slope = (sum_w * sum_wxy - sum_wx * sum_wy) / denom
|
||||
intercept = (sum_wy - slope * sum_wx) / sum_w
|
||||
|
||||
# Unweighted R2
|
||||
y_mean = sum(y) / n
|
||||
ss_tot = sum((yi - y_mean) ** 2 for yi in y)
|
||||
ss_res = sum((yi - (slope * xi + intercept)) ** 2 for xi, yi in zip(x, y))
|
||||
r2 = 1 - (ss_res / ss_tot) if ss_tot != 0 else 0
|
||||
|
||||
return slope, intercept, r2
|
||||
|
||||
@staticmethod
|
||||
def smooth_points(points: List[AnalysisPoint]) -> List[AnalysisPoint]:
|
||||
"""Weighted smoothing for Elastic mode."""
|
||||
if len(points) < 3: return points
|
||||
points.sort(key=lambda p: p.timestamp_ms)
|
||||
smoothed = [points[0]]
|
||||
for i in range(1, len(points) - 1):
|
||||
prev, curr, next_p = points[i - 1], points[i], points[i + 1]
|
||||
avg_offset = (prev.offset_ms * 0.25) + (curr.offset_ms * 0.5) + (next_p.offset_ms * 0.25)
|
||||
smoothed.append(AnalysisPoint(curr.timestamp_ms, avg_offset, curr.match_count))
|
||||
smoothed.append(points[-1])
|
||||
return smoothed
|
||||
|
||||
@staticmethod
|
||||
def get_interpolated_offset(target_ms: int, anchors: List[AnalysisPoint]) -> float:
|
||||
if target_ms <= anchors[0].timestamp_ms: return anchors[0].offset_ms
|
||||
if target_ms >= anchors[-1].timestamp_ms: return anchors[-1].offset_ms
|
||||
|
||||
for i in range(len(anchors) - 1):
|
||||
p1, p2 = anchors[i], anchors[i + 1]
|
||||
if p1.timestamp_ms <= target_ms < p2.timestamp_ms:
|
||||
alpha = (target_ms - p1.timestamp_ms) / (p2.timestamp_ms - p1.timestamp_ms)
|
||||
return p1.offset_ms + (alpha * (p2.offset_ms - p1.offset_ms))
|
||||
return anchors[0].offset_ms
|
||||
|
||||
@staticmethod
|
||||
def decide_sync_strategy(points: List[AnalysisPoint]) -> str:
|
||||
clean_points = Analyzer.filter_outliers(points)
|
||||
if len(clean_points) < 2: return 'CONSTANT'
|
||||
|
||||
offsets = [p.offset_ms for p in clean_points]
|
||||
std_dev = statistics.stdev(offsets) if len(offsets) > 1 else 0
|
||||
|
||||
print(f"\nAnalysis Metrics (Cleaned Data):")
|
||||
print(f" Spread: {max(offsets) - min(offsets)}ms")
|
||||
print(f" StdDev: {std_dev:.2f}ms")
|
||||
|
||||
if std_dev < SYNC_CONFIG['jitter_tolerance_ms']:
|
||||
print(" Decision: Offsets are stable (Low Jitter).")
|
||||
return 'CONSTANT'
|
||||
|
||||
if not SYNC_CONFIG['fix_drift']:
|
||||
print(" Decision: Drift detected but 'fix_drift' is False.")
|
||||
return 'CONSTANT'
|
||||
|
||||
slope, _, r2 = Analyzer.calculate_weighted_regression(clean_points)
|
||||
drift_per_hour = abs(slope - 1.0) * 3600000
|
||||
print(f" Linear Fit: R2={r2:.4f}, Slope={slope:.6f} (Drift: {drift_per_hour:.0f}ms/hr)")
|
||||
|
||||
if r2 >= SYNC_CONFIG['linear_r2_threshold'] and drift_per_hour > 100:
|
||||
print(" Decision: Linear drift detected.")
|
||||
return 'LINEAR'
|
||||
|
||||
print(" Decision: Variable/irregular drift.")
|
||||
return 'ELASTIC'
|
||||
49
core/matcher.py
Normal file
49
core/matcher.py
Normal file
@@ -0,0 +1,49 @@
|
||||
import re
|
||||
from difflib import SequenceMatcher
|
||||
from typing import List, Tuple
|
||||
|
||||
from config import SYNC_CONFIG
|
||||
from .types import SubtitleEntry, WhisperSegment
|
||||
|
||||
|
||||
class TextMatcher:
|
||||
@staticmethod
|
||||
def normalize_text(text: str) -> str:
|
||||
return re.sub(r'\s+', ' ', re.sub(r'[^\w\s]', '', text).lower().replace('\n', ' ')).strip()
|
||||
|
||||
@staticmethod
|
||||
def text_similarity(text1: str, text2: str) -> float:
|
||||
n1, n2 = TextMatcher.normalize_text(text1), TextMatcher.normalize_text(text2)
|
||||
if not n1 or not n2: return 0.0
|
||||
return SequenceMatcher(None, n1, n2).ratio()
|
||||
|
||||
@staticmethod
|
||||
def find_matches(subtitles: List[SubtitleEntry], whisper_segments: List[WhisperSegment], chunk_start_ms: int) -> \
|
||||
List[Tuple[SubtitleEntry, int, float]]:
|
||||
matches = []
|
||||
window = SYNC_CONFIG['search_window_sec'] * 1000
|
||||
scan_dur = SYNC_CONFIG['scan_duration_sec'] * 1000
|
||||
|
||||
# Optimization: Pre-filter subtitles
|
||||
relevant_subs = [
|
||||
s for s in subtitles
|
||||
if (chunk_start_ms - window) <= s.start_ms <= (chunk_start_ms + scan_dur + window)
|
||||
]
|
||||
|
||||
for w_seg in whisper_segments:
|
||||
abs_start = w_seg.start_ms + chunk_start_ms
|
||||
best_sub = None
|
||||
best_score = 0.0
|
||||
|
||||
for sub in relevant_subs:
|
||||
if not (abs_start - window <= sub.start_ms <= abs_start + window): continue
|
||||
if len(sub.raw_text) < 3: continue
|
||||
|
||||
score = TextMatcher.text_similarity(sub.raw_text, w_seg.text)
|
||||
if score > best_score:
|
||||
best_score = score
|
||||
best_sub = sub
|
||||
|
||||
if best_sub and best_score >= SYNC_CONFIG['min_match_score']:
|
||||
matches.append((best_sub, abs_start, best_score))
|
||||
return matches
|
||||
44
core/media.py
Normal file
44
core/media.py
Normal file
@@ -0,0 +1,44 @@
|
||||
import json
|
||||
import os
|
||||
import subprocess
|
||||
import tempfile
|
||||
|
||||
|
||||
class MediaHandler:
|
||||
@staticmethod
|
||||
def get_media_duration(media_path: str) -> float:
|
||||
cmd = ["ffprobe", "-v", "error", "-show_entries", "format=duration", "-of",
|
||||
"default=noprint_wrappers=1:nokey=1", media_path]
|
||||
try:
|
||||
return float(subprocess.run(cmd, capture_output=True, text=True).stdout.strip())
|
||||
except Exception:
|
||||
return 3600.0
|
||||
|
||||
@staticmethod
|
||||
def get_audio_stream_index(media_path: str, language: str) -> str:
|
||||
lang_map = {'english': 'eng', 'french': 'fre', 'fra': 'fre', 'german': 'ger', 'spanish': 'spa',
|
||||
'italian': 'ita'}
|
||||
target_iso = lang_map.get(language.lower(), 'eng')
|
||||
|
||||
cmd = ["ffprobe", "-v", "quiet", "-print_format", "json", "-show_streams", "-select_streams", "a", media_path]
|
||||
try:
|
||||
data = json.loads(subprocess.run(cmd, capture_output=True, text=True).stdout)
|
||||
for i, stream in enumerate(data.get('streams', [])):
|
||||
if stream.get('tags', {}).get('language', 'und').lower() == target_iso:
|
||||
return f"0:a:{i}"
|
||||
return "0:a:0"
|
||||
except Exception:
|
||||
return "0:a:0"
|
||||
|
||||
@staticmethod
|
||||
def extract_audio_chunk(media_path: str, start_sec: int, duration_sec: int, stream_index: str) -> str:
|
||||
fd, tmp_name = tempfile.mkstemp(suffix=".wav")
|
||||
os.close(fd)
|
||||
|
||||
cmd = [
|
||||
"ffmpeg", "-y", "-ss", str(start_sec), "-i", media_path,
|
||||
"-map", stream_index, "-t", str(duration_sec),
|
||||
"-ac", "1", "-ar", "16000", "-vn", "-loglevel", "error", tmp_name
|
||||
]
|
||||
subprocess.run(cmd, check=True)
|
||||
return tmp_name
|
||||
49
core/subtitles.py
Normal file
49
core/subtitles.py
Normal file
@@ -0,0 +1,49 @@
|
||||
import os
|
||||
import re
|
||||
from typing import List
|
||||
|
||||
from .types import SubtitleEntry
|
||||
|
||||
|
||||
class SubtitleHandler:
|
||||
@staticmethod
|
||||
def parse_time(t):
|
||||
h, m, s, ms = int(t[:2]), int(t[3:5]), int(t[6:8]), int(t[9:])
|
||||
return h * 3600000 + m * 60000 + s * 1000 + ms
|
||||
|
||||
@staticmethod
|
||||
def format_time(ms):
|
||||
ms = max(0, ms)
|
||||
h, r = divmod(ms, 3600000)
|
||||
m, r = divmod(r, 60000)
|
||||
s, ms = divmod(r, 1000)
|
||||
return f"{h:02}:{m:02}:{s:02},{ms:03}"
|
||||
|
||||
@staticmethod
|
||||
def parse_srt(filepath: str) -> List[SubtitleEntry]:
|
||||
if not os.path.exists(filepath): return []
|
||||
encodings = ['utf-8-sig', 'utf-8', 'latin-1']
|
||||
content = ""
|
||||
for enc in encodings:
|
||||
try:
|
||||
with open(filepath, 'r', encoding=enc) as f:
|
||||
content = f.read()
|
||||
break
|
||||
except UnicodeDecodeError:
|
||||
continue
|
||||
|
||||
entries = []
|
||||
pattern = re.compile(r'(\d+)\n(\d{2}:\d{2}:\d{2},\d{3}) --> (\d{2}:\d{2}:\d{2},\d{3})\n((?:(?!\r?\n\r?\n).)*)',
|
||||
re.DOTALL)
|
||||
for match in pattern.finditer(content):
|
||||
start = SubtitleHandler.parse_time(match.group(2))
|
||||
end = SubtitleHandler.parse_time(match.group(3))
|
||||
entries.append(SubtitleEntry(int(match.group(1)), start, end, match.group(4).strip()))
|
||||
return entries
|
||||
|
||||
@staticmethod
|
||||
def write_srt(filepath: str, entries: List[SubtitleEntry]):
|
||||
with open(filepath, 'w', encoding='utf-8') as f:
|
||||
for entry in entries:
|
||||
f.write(
|
||||
f"{entry.index}\n{SubtitleHandler.format_time(entry.start_ms)} --> {SubtitleHandler.format_time(entry.end_ms)}\n{entry.raw_text}\n\n")
|
||||
32
core/types.py
Normal file
32
core/types.py
Normal file
@@ -0,0 +1,32 @@
|
||||
from dataclasses import dataclass
|
||||
|
||||
|
||||
@dataclass
|
||||
class SubtitleEntry:
|
||||
index: int
|
||||
start_ms: int
|
||||
end_ms: int
|
||||
raw_text: str
|
||||
|
||||
|
||||
@dataclass
|
||||
class WhisperSegment:
|
||||
start_ms: int
|
||||
end_ms: int
|
||||
text: str
|
||||
|
||||
|
||||
@dataclass
|
||||
class AnalysisPoint:
|
||||
timestamp_ms: int
|
||||
offset_ms: int
|
||||
match_count: int
|
||||
|
||||
|
||||
@dataclass
|
||||
class SubtitleInfo:
|
||||
episode_path: str
|
||||
episode_name: str
|
||||
subtitle_path: str
|
||||
episode_language: str
|
||||
subtitles_language: str
|
||||
Reference in New Issue
Block a user