Compare commits

...

5 Commits
v1.5.0 ... main

7 changed files with 279 additions and 142 deletions

View File

@ -16,8 +16,7 @@ process images and return the license plate information found in the image while
> **I am not affiliated with ultimateALPR-SDK in any way, and I am not responsible for any misuse of the software.**
> [!NOTE]
> The [ultimateALPR-SDK](https://github.com/DoubangoTelecom/ultimateALPR-SDK) is a lightweight and much faster alternative (on CPU and GPU) to existing solutions like
> [CodeProject AI](https://www.codeproject.com/AI/docs/index.html) but it has **one important restriction** with it's free version:
> The [ultimateALPR-SDK](https://github.com/DoubangoTelecom/ultimateALPR-SDK) is a lightweight and much faster alternative (on CPU and GPU) than existing solutions but it has **one important restriction** with it's free version:
> - The last character of the license plate is masked with an asterisk *(e.g. ``ABC1234`` -> ``ABC123*``)*
## Installation
@ -35,40 +34,68 @@ The server listens on port 5000 and has a few endpoints documented below, the mo
> POST: http://localhost:5000/v1/vision/alpr
**Description**
This endpoint processes an image and returns the license plate information (if any) found in the image.
This endpoint follows
the [CodeProject AI ALPR API](https://www.codeproject.com/AI/docs/api/api_reference.html#license-plate-reader) format *(
example below)* so it can be used as a **drop-in replacement** for the CodeProject AI software.
This endpoint processes an image and returns the license plate information (if any) found in the image.
**Parameters**
- upload: (File) The image file to process. *(
see [Pillow.Image.open()](https://pillow.readthedocs.io/en/stable/reference/Image.html#PIL.Image.open) for supported
formats, almost any image format is supported)*
- grid_size: (Integer, optional) Size of grid to divide the image into and retry on each cell when no match have been
found on the whole image *(default: 3)* **[(more info)](#more-information-about-the-grid-parameter)**
- wanted_cells: (String, optional) The cells you want to process *(default: all cells)* *
*[(see here)](#v1visionalpr_grid_debug)**
- format: ``1,2,3,4,...`` *(comma separated list of integers, max: grid_size^2)*
found on the whole image, must be ``>=2`` *(default: 0, disabled)* **[(more info)](#more-information-about-the-grid-parameter)**
- wanted_cells: (String, optional) The cells you want to process *(default: all cells)* **[(see here for more details)](#v1visionalpr_grid_debug)**
- format: ``1,2,3,4,...`` *(comma separated list of integers, max: ``grid_size^2``)*
- *Example for a grid_size of 3:*
```
1 | 2 | 3
4 | 5 | 6
7 | 8 | 9
```
- whole_image_fallback: (Boolean, optional) Only applies when ``grid_size`` is greater than 2.
If set to true, the server will first try to detect the plate from the ``wanted_cells`` parameter and if no plate is found, it will then try to detect the plate on the whole image.
If set to false, the server will only try to detect the plate on the specified cells. *(default: true)*
**Response**
```jsonc
{
"success": (Boolean) // True if successful.
"message": (String) // A summary of the inference operation.
"error": (String) // (Optional) An description of the error if success was false.
"predictions": (Object[]) // An array of objects with the x_max, x_min, max, y_min bounds of the plate, label, the plate chars and confidence.
"processMs": (Integer) // The time (ms) to process the image (includes inference and image manipulation operations).
"duration": (Float) // The time taken to process the image in milliseconds.
"plates": List // An array of plates found in the image.
"predictions": (Object[]) // An array of objects with the x_max, x_min, y_max, y_min bounds of the plate, image, the plate chars and confidence.
}
```
**Example**
```json
{
"duration": 142.02,
"plates": [
"XX12345*",
"YY5432*"
],
"predictions": [
{
"confidence": 0.9009034,
"image": "",
"plate": "XX12345*",
"x_max": 680,
"x_min": 610,
"y_max": 386,
"y_min": 355
},
{
"confidence": 0.8930383999999999,
"image": "",
"plate": "YY5432*",
"x_max": 680,
"x_min": 483,
"y_max": 706,
"y_min": 624
}
]
}
```
### /v1/vision/alpr_grid_debug
> POST: http://localhost:5000/v1/vision/alpr_grid_debug
@ -90,15 +117,10 @@ It is intended to be used for debugging purposes to see which cells are being pr
## More information about the grid parameter
When you send an image to the server, sometimes the ALPR software cannot find any plate because the image is too big or
the plate is too small in the image.
To solve this problem, if no plate is found on the whole image, the server will divide the image into a grid of cells
and retry the ALPR software on each cell.
You can specify the size of the grid with the ``grid_size`` parameter in each of your requests.
> [!CAUTION]
> The higher the grid size, the longer the processing time will be. It is recommended to keep the grid size between 3
> and 4.
> Note: The processing time is in no way multiplied by the grid size (usually takes 2x the time)
Sometimes, the ALPR software cannot find any plate because the image is too big or the plate is too small in the image.
To solve this problem, you can make use of the ``grid_size`` parameter in each of your requests.
If you set the ``grid_size`` parameter to a value greater than 2, the server will divide the image into a grid of cells
and retry the ALPR software on each cell.
You can speed up the processing time by specifying the ``wanted_cells`` parameter. This parameter allows you to specify
which cells you want to run plate detection on.
@ -109,7 +131,7 @@ This can be useful if you know the plates can only be in certain areas of the im
> You can then specify the ``wanted_cells`` parameter to only process the cells you want.
**If you wish not to use the grid, you can set the ``grid_size`` parameter to
0 *(and leave the ``wanted_cells`` parameter empty)*.**
0 or leave it empty *(and leave the ``wanted_cells`` parameter empty)*.**
### Example

View File

@ -41,14 +41,14 @@ else:
"assets_folder": os.path.join(bundle_dir, "assets"),
"charset": "latin",
"car_noplate_detect_enabled": False,
"ienv_enabled": False,
"ienv_enabled": True, # night vision enhancements
"openvino_enabled": True,
"openvino_device": "CPU",
"npu_enabled": False,
"klass_lpci_enabled": False,
"klass_vcr_enabled": False,
"klass_vmmr_enabled": False,
"klass_vbsr_enabled": False,
"klass_lpci_enabled": False, # License Plate Country Identification
"klass_vcr_enabled": False, # Vehicle Color Recognition (paid)
"klass_vmmr_enabled": False, # Vehicle Make and Model Recognition
"klass_vbsr_enabled": False, # Vehicle Body Style Recognition (paid)
"license_token_file": "",
"license_token_data": "",
@ -150,40 +150,56 @@ def create_rest_server_flask():
- upload: The image to be processed
- grid_size: The number of cells to split the image into (e.g. 3)
- wanted_cells: The cells to process in the grid separated by commas (e.g. 1,2,3,4) (max: grid_size²)
- whole_image_fallback: If set to true, the whole image will be processed if no plates are found in the specified cells. (default: true)
"""
interference = time.time()
whole_image_fallback = request.form.get('whole_image_fallback', 'true').lower() == 'true'
try:
if 'upload' not in request.files:
return jsonify({'error': 'No image found'}), 400
grid_size = int(request.form.get('grid_size', 3))
wanted_cells = request.form.get('wanted_cells')
if wanted_cells:
wanted_cells = [int(cell) for cell in wanted_cells.split(',')]
else:
wanted_cells = list(range(1, grid_size * grid_size + 1))
grid_size = int(request.form.get('grid_size', 1))
wanted_cells = _get_wanted_cells_from_request(request, grid_size)
image_file = request.files['upload']
if image_file.filename == '':
return jsonify({'error': 'No selected file'}), 400
image = Image.open(image_file)
result = process_image(image)
result = convert_to_cpai_compatible(result)
image = _load_image_from_request(request)
result = {
'predictions': [],
'plates': [],
'duration': 0
}
if grid_size < 2:
logger.debug("Grid size < 2, processing the whole image")
response = process_image(image)
result.update(_parse_result_from_ultimatealpr(response))
else:
logger.debug(f"Grid size: {grid_size}, processing specified cells: {wanted_cells}")
predictions_found = _find_best_plate_with_grid_split(image, grid_size, wanted_cells)
result['predictions'].extend(predictions_found)
if not result['predictions']:
logger.debug("No plate found, attempting grid split")
predictions_found = find_best_plate_with_grid_split(image, grid_size, wanted_cells)
if predictions_found:
result['predictions'].append(max(predictions_found, key=lambda x: x['confidence']))
if grid_size >= 2 and whole_image_fallback:
logger.debug("No plates found in the specified cells, trying whole image as last resort")
response = process_image(image)
result.update(_parse_result_from_ultimatealpr(response))
if result['predictions']:
isolated_plate_image = isolate_plate_in_image(image, result['predictions'][0])
result['image'] = f"data:image/png;base64,{image_to_base64(isolated_plate_image, compress=True)}"
if result['predictions'] and len(result['predictions']) > 0:
all_plates = []
for plate in result['predictions']:
all_plates.append(plate.get('plate'))
isolated_plate_image = isolate_plate_in_image(image, plate)
plate['image'] = f"data:image/png;base64,{image_to_base64(isolated_plate_image, compress=True)}"
process_ms = round((time.time() - interference) * 1000, 2)
result.update({'processMs': process_ms, 'inferenceMs': process_ms})
result['plates'] = all_plates
duration = round((time.time() - interference) * 1000, 2)
result.update({'duration': duration})
return jsonify(result)
except Exception as e:
logger.error(f"Error processing image: {e}")
@ -208,17 +224,13 @@ def create_rest_server_flask():
return jsonify({'error': 'No image found'}), 400
grid_size = int(request.form.get('grid_size', 3))
wanted_cells = request.form.get('wanted_cells')
if wanted_cells:
wanted_cells = [int(cell) for cell in wanted_cells.split(',')]
else:
wanted_cells = list(range(1, grid_size * grid_size + 1))
wanted_cells = _get_wanted_cells_from_request(request, grid_size)
image_file = request.files['upload']
if image_file.filename == '':
return jsonify({'error': 'No selected file'}), 400
image = Image.open(image_file)
image = _load_image_from_request(request)
image = draw_grid_and_cell_numbers_on_image(image, grid_size, wanted_cells)
image_base64 = image_to_base64(image, compress=True)
@ -235,23 +247,46 @@ def create_rest_server_flask():
return app
def convert_to_cpai_compatible(result):
def _get_wanted_cells_from_request(request, grid_size) -> list:
"""
Helper function to extract wanted cells from the request.
If no cells are specified, it returns all cells in the grid.
"""
wanted_cells = request.form.get('wanted_cells')
if wanted_cells:
wanted_cells = [int(cell) for cell in wanted_cells.split(',')]
else:
wanted_cells = list(range(1, grid_size * grid_size + 1))
if not all(1 <= cell <= grid_size * grid_size for cell in wanted_cells):
raise ValueError("Invalid cell numbers provided.")
return wanted_cells
def _load_image_from_request(request) -> Image:
"""
Helper function to load an image from the request.
It expects the image to be in the 'upload' field of the request.
"""
if 'upload' not in request.files:
raise ValueError("No image found in request.")
image_file = request.files['upload']
if image_file.filename == '':
raise ValueError("No selected file.")
try:
image = Image.open(image_file)
return correct_image_orientation(image)
except Exception as e:
raise ValueError(f"Error loading image: {e}")
def _parse_result_from_ultimatealpr(result) -> dict:
result = json.loads(result)
response = {
'success': "true",
'processMs': result['duration'],
'inferenceMs': result['duration'],
'predictions': [],
'message': '',
'moduleId': 'ALPR',
'moduleName': 'License Plate Reader',
'code': 200,
'command': 'alpr',
'requestId': 'null',
'inferenceDevice': 'none',
'analysisRoundTripMs': 0,
'processedBy': 'none',
'timestamp': ''
}
for plate in result.get('plates', []):
@ -263,7 +298,6 @@ def convert_to_cpai_compatible(result):
response['predictions'].append({
'confidence': plate['confidences'][0] / 100,
'label': f"Plate: {plate['text']}",
'plate': plate['text'],
'x_min': x_min,
'x_max': x_max,
@ -273,7 +307,66 @@ def convert_to_cpai_compatible(result):
return response
def _find_best_plate_with_grid_split(image: Image, grid_size: int = 3, wanted_cells: list = None,
stop_at_first_match: bool = False) -> list:
"""
Splits the image into a grid and processes each cell to find the best plate.
Returns a list of predictions found in the specified cells.
"""
if grid_size < 2:
logger.debug("Grid size < 2, skipping split")
return []
predictions_found = []
width, height = image.size
cell_width = width // grid_size
cell_height = height // grid_size
for cell_index in range(1, grid_size * grid_size + 1):
row = (cell_index - 1) // grid_size
col = (cell_index - 1) % grid_size
left = col * cell_width
upper = row * cell_height
right = left + cell_width
lower = upper + cell_height
if cell_index in wanted_cells:
cell_image = image.crop((left, upper, right, lower))
result = process_image(cell_image)
logger.info(f"Processed image with result (grid): {result}")
result_cell = json.loads(result)
for plate in result_cell.get('plates', []):
warpedBox = plate['warpedBox']
x_coords = warpedBox[0::2]
y_coords = warpedBox[1::2]
x_min = min(x_coords) + left
x_max = max(x_coords) + left
y_min = min(y_coords) + upper
y_max = max(y_coords) + upper
predictions_found.append({
'confidence': plate['confidences'][0] / 100,
'plate': plate['text'],
'x_min': x_min,
'x_max': x_max,
'y_min': y_min,
'y_max': y_max
})
if stop_at_first_match:
logger.debug(f"Found plate in cell {cell_index}: {plate['text']}")
return predictions_found
return predictions_found
def draw_grid_and_cell_numbers_on_image(image: Image, grid_size: int = 3, wanted_cells: list = None) -> Image:
"""
Draws a grid on the image and numbers the cells.
"""
if grid_size < 1:
grid_size = 1
@ -303,57 +396,13 @@ def draw_grid_and_cell_numbers_on_image(image: Image, grid_size: int = 3, wanted
return image
def find_best_plate_with_grid_split(image: Image, grid_size: int = 3, wanted_cells: list = None):
if grid_size < 1:
logger.debug("Grid size < 1, skipping split")
return []
def isolate_plate_in_image(image: Image, plate: dict, offset=10) -> Image:
"""
Isolates the plate area in the image and returns a cropped and resized image.
"""
if wanted_cells is None:
wanted_cells = list(range(1, grid_size * grid_size + 1))
predictions_found = []
width, height = image.size
cell_width = width // grid_size
cell_height = height // grid_size
for cell_index in range(1, grid_size * grid_size + 1):
row = (cell_index - 1) // grid_size
col = (cell_index - 1) % grid_size
left = col * cell_width
upper = row * cell_height
right = left + cell_width
lower = upper + cell_height
if cell_index in wanted_cells:
cell_image = image.crop((left, upper, right, lower))
result_cell = json.loads(process_image(cell_image))
for plate in result_cell.get('plates', []):
warpedBox = plate['warpedBox']
x_coords = warpedBox[0::2]
y_coords = warpedBox[1::2]
x_min = min(x_coords) + left
x_max = max(x_coords) + left
y_min = min(y_coords) + upper
y_max = max(y_coords) + upper
predictions_found.append({
'confidence': plate['confidences'][0] / 100,
'label': f"Plate: {plate['text']}",
'plate': plate['text'],
'x_min': x_min,
'x_max': x_max,
'y_min': y_min,
'y_max': y_max
})
return predictions_found
def isolate_plate_in_image(image: Image, plate: dict) -> Image:
x_min, x_max = plate['x_min'], plate['x_max']
y_min, y_max = plate['y_min'], plate['y_max']
offset = 10
x_min, x_max = plate.get('x_min'), plate.get('x_max')
y_min, y_max = plate.get('y_min'), plate.get('y_max')
cropped_image = image.crop((max(0, x_min - offset), max(0, y_min - offset), min(image.size[0], x_max + offset),
min(image.size[1], y_max + offset)))
@ -363,7 +412,7 @@ def isolate_plate_in_image(image: Image, plate: dict) -> Image:
return resized_image
def image_to_base64(img: Image, compress=False):
def image_to_base64(img: Image, compress=False) -> str:
"""Convert a Pillow image to a base64-encoded string."""
buffered = io.BytesIO()
@ -376,6 +425,28 @@ def image_to_base64(img: Image, compress=False):
return base64.b64encode(buffered.getvalue()).decode('utf-8')
from PIL import Image, ExifTags
def correct_image_orientation(img):
try:
exif = img._getexif()
if exif is not None:
orientation_key = next(
(k for k, v in ExifTags.TAGS.items() if v == 'Orientation'), None)
if orientation_key is not None:
orientation = exif.get(orientation_key)
if orientation == 3:
img = img.rotate(180, expand=True)
elif orientation == 6:
img = img.rotate(270, expand=True)
elif orientation == 8:
img = img.rotate(90, expand=True)
except Exception as e:
print("EXIF orientation correction failed:", e)
return img
if __name__ == '__main__':
engine_thread = threading.Thread(target=start_backend_loop, daemon=True)
engine_thread.start()

View File

@ -1,12 +1,12 @@
#!/bin/bash
VERSION=1.5.0
VERSION=1.6.0
rm -rf buildenv build dist *.spec
python3.10 -m venv buildenv
source buildenv/bin/activate
python3.10 -m pip install --upgrade pip pyinstaller
python3.10 -m pip install ./wheel/ultimateAlprSdk-3.0.0-cp310-cp310-linux_x86_64.whl
python3.10 -m pip install ./wheel/ultimateAlprSdk-3.14.1-cp310-cp310-linux_x86_64.whl
pip install -r requirements.txt
pyinstaller --noconfirm --onefile --console --add-data libs:. --add-data assets:assets --add-data static:static --add-data templates:templates --name easy-local-alpr-$VERSION-openvinocpu_linux_x86_64 "alpr_api.py"

View File

@ -1,5 +1,7 @@
#!/bin/bash
deactivate 2>/dev/null
# Function to create virtual environment, install the wheel, and copy assets and libs
install_and_setup() {
echo "Creating virtual environment at the root..."
@ -55,10 +57,10 @@ prompt_auto_setup() {
esac
}
# Directories
# Variables
ROOT_DIR=$(pwd)
BUILD_DIR="$ROOT_DIR/tmp-build-env"
SDK_ZIP_URL="https://github.com/DoubangoTelecom/ultimateALPR-SDK/archive/8130c76140fe8edc60fe20f875796121a8d22fed.zip"
SDK_ZIP_URL="https://github.com/DoubangoTelecom/ultimateALPR-SDK/archive/febe9921e7dd37e64901d84cad01d51eca6c6a71.zip" # 3.14.1
SDK_ZIP="$BUILD_DIR/temp-sdk.zip"
SDK_DIR="$BUILD_DIR/temp-sdk"
BIN_DIR="$SDK_DIR/binaries/linux/x86_64"
@ -69,7 +71,12 @@ cd "$BUILD_DIR" || exit
# Clone SDK
echo "Downloading SDK..."
wget "$SDK_ZIP_URL" -O "$SDK_ZIP" >/dev/null 2>&1
if [ -f "$SDK_ZIP" ]; then
echo "SDK zip already exists."
rm -R "$SDK_DIR"
else
wget "$SDK_ZIP_URL" -O "$SDK_ZIP" >/dev/null 2>&1
fi
if [ $? -ne 0 ]; then
echo "Failed to download SDK."
exit 1
@ -121,26 +128,30 @@ read -r -p "Do you want TensorFlow for CPU or GPU? (cpu/gpu): " tf_choice
mkdir -p "$BIN_DIR/tensorflow"
if [ "$tf_choice" == "gpu" ]; then
echo "Downloading TensorFlow GPU..."
wget https://storage.googleapis.com/tensorflow/libtensorflow/libtensorflow-gpu-linux-x86_64-2.6.0.tar.gz >/dev/null 2>&1
wget https://storage.googleapis.com/tensorflow/libtensorflow/libtensorflow-gpu-linux-x86_64-2.6.0.tar.gz >/dev/null 2>&1 # Use 2.6 for newer GPU support
if [ $? -ne 0 ]; then
echo "Failed to download TensorFlow GPU."
exit 1
fi
echo "Extracting TensorFlow GPU..."
tar -xf libtensorflow-gpu-linux-x86_64-2.6.0.tar.gz -C "$BIN_DIR/tensorflow" >/dev/null 2>&1
mv "$BIN_DIR/tensorflow/lib/libtensorflow.so.1" "$BIN_DIR/libs/libtensorflow.so.1"
mv "$BIN_DIR/tensorflow/lib/libtensorflow_framework.so.2.6.0" "$BIN_DIR/libs/libtensorflow_framework.so.2"
else
echo "Downloading TensorFlow CPU..."
wget https://storage.googleapis.com/tensorflow/libtensorflow/libtensorflow-cpu-linux-x86_64-2.6.0.tar.gz >/dev/null 2>&1
#wget https://storage.googleapis.com/tensorflow/libtensorflow/libtensorflow-cpu-linux-x86_64-2.6.0.tar.gz >/dev/null 2>&1
wget https://storage.googleapis.com/tensorflow/libtensorflow/libtensorflow-cpu-linux-x86_64-1.14.0.tar.gz >/dev/null 2>&1 # Use 1.14 as it's smaller in size
if [ $? -ne 0 ]; then
echo "Failed to download TensorFlow CPU."
exit 1
fi
echo "Extracting TensorFlow CPU..."
tar -xf libtensorflow-cpu-linux-x86_64-2.6.0.tar.gz -C "$BIN_DIR/tensorflow" >/dev/null 2>&1
fi
tar -xf libtensorflow-cpu-linux-x86_64-1.14.0.tar.gz -C "$BIN_DIR/tensorflow" >/dev/null 2>&1
mv "$BIN_DIR/tensorflow/lib/libtensorflow.so.1" "$BIN_DIR/libs/libtensorflow.so.1"
mv "$BIN_DIR/tensorflow/lib/libtensorflow_framework.so.2.6.0" "$BIN_DIR/libs/libtensorflow_framework.so.2"
mv "$BIN_DIR/tensorflow/lib/"* "$BIN_DIR/libs/"
fi
# Build the wheel
echo "Building the wheel..."
@ -155,10 +166,10 @@ mv "$BIN_DIR/dist/"*.whl "$BUILD_DIR"
mv "$BIN_DIR/libs" "$BUILD_DIR"
mv "$BIN_DIR/plugins.xml" "$BUILD_DIR/libs"
strip "$BUILD_DIR/libs"/*.so*
# Move the assets to the root directory
mv "$SDK_DIR/assets" "$BUILD_DIR/assets"
# Removes unused models (only keeps TensorFlow and OpenVINO basic license plat recognition)
rm -Rf "$BUILD_DIR/assets/images" "$BUILD_DIR/assets/models.amlogic_npu" "$BUILD_DIR/assets/models.tensorrt" $BUILD_DIR/assets/models/ultimateALPR-SDK_klass* $BUILD_DIR/assets/models/ultimateALPR-SDK_*mobile* $BUILD_DIR/assets/models/*korean* $BUILD_DIR/assets/models/*chinese* $BUILD_DIR/assets/models/ultimateALPR-SDK_recogn1x100* $BUILD_DIR/assets/models/ultimateALPR-SDK_recogn1x200* $BUILD_DIR/assets/models/ultimateALPR-SDK_recogn1x300* $BUILD_DIR/assets/models/ultimateALPR-SDK_recogn1x400* $BUILD_DIR/assets/models.openvino/ultimateALPR-SDK_klass*
# Deactivate and clean up the build virtual environment
echo "Deactivating and cleaning up virtual environment..."

View File

@ -91,18 +91,28 @@
<span id="fileName_alpr" class="ml-2 text-sm text-gray-600 dark:text-gray-300"></span>
</div>
</div>
<div>
<div class="mt-4">
<label for="grid_size_alpr" class="block text-sm font-medium text-gray-700 dark:text-gray-300">Grid
Size:</label>
<input type="number" id="grid_size_alpr" name="grid_size" value="3"
class="mt-1 block w-full px-3 py-2 border border-gray-300 rounded-md shadow-sm focus:outline-none focus:ring-indigo-500 focus:border-indigo-500 sm:text-sm dark:bg-neutral-800 dark:border-neutral-700">
</div>
<div>
<div class="mt-4">
<label for="wanted_cells_alpr" class="block text-sm font-medium text-gray-700 dark:text-gray-300">Wanted
Cells:</label>
<div id="gridContainer_alpr" class="grid-container"></div>
<input type="hidden" id="wanted_cells_alpr" name="wanted_cells">
</div>
<div class="mt-4 flex flex-row space-between">
<div>
<label for="whole_image_fallback_alpr" class="block text-sm font-medium text-gray-700 dark:text-gray-300">Fallback to whole image if no plate is found in specified cells?</label>
<span class="text-sm text-gray-500 dark:text-gray-400">Only applies if grid size >=2</span>
</div>
<div id="gridContainer_alpr" class="grid-container"></div>
<input type="checkbox" id="whole_image_fallback_alpr" checked>
</div>
<input id="plate_image_alpr" name="plate_image_alpr" type="hidden" value="true">
</div>
@ -122,7 +132,7 @@
<div>
<label for="grid_size_alpr_grid_debug"
class="block text-sm font-medium text-gray-700 dark:text-gray-300">Grid Size:</label>
<input type="number" id="grid_size_alpr_grid_debug" name="grid_size" value="3"
<input type="number" id="grid_size_alpr_grid_debug" name="grid_size" value="1"
class="mt-1 block w-full px-3 py-2 border border-gray-300 rounded-md shadow-sm focus:outline-none focus:ring-indigo-500 focus:border-indigo-500 sm:text-sm dark:bg-neutral-800 dark:border-neutral-700">
</div>
<div>
@ -135,10 +145,12 @@
<div id="imagePreview" class="mt-4 hidden">
<label id="imagePreviewLabel"
class="block text sm font-medium text-gray-700 dark:text-gray-300">Preview:</label>
<img id="previewImage" src="#" alt="Preview" class="max-w-full h-auto rounded-lg">
class="block text-sm font-medium text-gray-700 dark:text-gray-300 mb-2">Identified plate images:</label>
<div id="previewImageContainer" class="grid grid-cols-1 sm:grid-cols-2 gap-4"></div>
<img id="previewImageDebug" src="#" alt="" class="max-w-full h-auto rounded-lg">
</div>
<button class="w-full py-2 px-4 bg-black text-white font-semibold rounded-md shadow-sm hover:bg-neutral-900 dark:bg-neutral-900 dark:hover:bg-neutral-950"
id="submitButton" type="submit">Submit
</button>
@ -271,6 +283,7 @@
e.preventDefault();
const service = $('#service').val();
const formData = new FormData(this);
formData.append('whole_image_fallback', $("#whole_image_fallback_alpr").is(":checked") ? "true" : "false");
var url;
if (service === 'alpr') {
url = '/v1/image/alpr';
@ -296,14 +309,34 @@
$('#timer').text(`(${elapsedTime} ms)`);
$('#submitButton').prop('disabled', false).text('Submit');
$('#previewImageDebug').attr('src', '');
$('#previewImageContainer').empty();
if (data.image) {
$('#previewImage').attr('src', data.image);
$('#previewImageDebug').attr('src', data.image);
$('#imagePreview').removeClass('hidden');
}
if (service === 'alpr') $('#imagePreviewLabel').text('Identified plate image:');
if (Array.isArray(data.predictions) && data.predictions.length > 0) {
data.predictions.forEach((prediction, index) => {
if (prediction.image) {
const img = $('<img>')
.attr('src', prediction.image)
.addClass('max-w-full h-auto rounded-lg border border-gray-300 dark:border-gray-700 shadow');
const wrapper = $('<div>').append(
$('<p>').addClass('text-sm mb-1 text-gray-600 dark:text-gray-300').text(`Plate ${index + 1}`),
img
);
$('#previewImageContainer').append(wrapper);
}
});
$('#imagePreview').removeClass('hidden');
$('#imagePreviewLabel').text('Identified plate images:');
} else {
updateFileName();
updateFileName(); // fallback if no images found
}
},
error: function (xhr) {