mirror of
https://github.com/M4TH1EU/easy-local-alpr.git
synced 2025-09-14 07:53:11 +00:00
Compare commits
17 Commits
Author | SHA1 | Date | |
---|---|---|---|
cdbc322fb3 | |||
dc74b776b4 | |||
da0094ec9b | |||
10345b4dd9 | |||
145452b0ae | |||
59a54945ff | |||
87e2d6dd7b | |||
e026c61ea3 | |||
64791828d1 | |||
b15b05c157 | |||
b8c04b133d | |||
7d31c06a9f | |||
8bc5187d5e | |||
224d566d65 | |||
8d5c55fb88 | |||
9cf457511e | |||
0d7351d651 |
BIN
.git-assets/example_grid.webp
Normal file
BIN
.git-assets/example_grid.webp
Normal file
Binary file not shown.
After Width: | Height: | Size: 15 KiB |
BIN
.git-assets/example_grid_2.webp
Normal file
BIN
.git-assets/example_grid_2.webp
Normal file
Binary file not shown.
After Width: | Height: | Size: 16 KiB |
BIN
.git-assets/logo.webp
Normal file
BIN
.git-assets/logo.webp
Normal file
Binary file not shown.
After Width: | Height: | Size: 4.2 KiB |
Before Width: | Height: | Size: 25 KiB After Width: | Height: | Size: 25 KiB |
176
README.md
176
README.md
@ -1,65 +1,172 @@
|
|||||||
# Easy local ALPR (Automatic License Plate Recognition)
|

|
||||||
|

|
||||||
|
|
||||||

|
# Easy Local ALPR (Automatic License Plate Recognition)
|
||||||
|
This project is a simple local ALPR (Automatic License Plate Recognition) server that uses the [ultimateALPR-SDK](https://github.com/DoubangoTelecom/ultimateALPR-SDK) to
|
||||||
|
process images and return the license plate information found in the image while focusing on being:
|
||||||
|
- **Fast** *(~100ms per image on decent CPU)*
|
||||||
|
- **Lightweight** *(~100MB of RAM)*
|
||||||
|
- **Easy to use** *(REST API)*
|
||||||
|
- **Easy to setup** *(one command setup)*
|
||||||
|
- **Offline** *(no internet connection required)*
|
||||||
|
|
||||||
This script is a REST API server that uses [ultimateALPR-SDK](https://github.com/DoubangoTelecom/ultimateALPR-SDK) to process images and return the license plate
|
|
||||||
information. The server is created using Flask and the ultimateALPR SDK is used to process the images.
|
|
||||||
|
|
||||||
This script is intended to be used as a faster local alternative to the large and resource heavy [CodeProject AI](https://www.codeproject.com/AI/docs) software.
|
|
||||||
> [!IMPORTANT]
|
> [!IMPORTANT]
|
||||||
> The ultimateALPR SDK is a lightweight and much faster alternative (on CPU and GPU) to the CodeProject AI software but it has **a few limitations** with it's free version:
|
> This project relies on the [ultimateALPR-SDK](https://github.com/DoubangoTelecom/ultimateALPR-SDK), which is a commercial product but has a free version with a few limitations.
|
||||||
> - The last character of the license plate is masked with an asterisk
|
> For any commercial use, you will need to take a look at their licensing terms.
|
||||||
> - The SDK supposedly has a limit of requests per program execution *(never encountered yet)* **but I have implemented a workaround for this by restarting the SDK after 3000 requests just in case.**
|
> **I am not affiliated with ultimateALPR-SDK in any way, and I am not responsible for any misuse of the software.**
|
||||||
|
|
||||||
|
> [!NOTE]
|
||||||
|
> The [ultimateALPR-SDK](https://github.com/DoubangoTelecom/ultimateALPR-SDK) is a lightweight and much faster alternative (on CPU and GPU) than existing solutions but it has **one important restriction** with it's free version:
|
||||||
|
> - The last character of the license plate is masked with an asterisk *(e.g. ``ABC1234`` -> ``ABC123*``)*
|
||||||
|
|
||||||
|
## Installation
|
||||||
|
Simply download the latest release from the [releases page](./releases) and run the executable.
|
||||||
|
|
||||||
|
The following platforms are currently supported:
|
||||||
|
- **Linux** (x86_64)
|
||||||
|
|
||||||
## Usage
|
## Usage
|
||||||
The server listens on port 5000 and has one endpoint: /v1/image/alpr. The endpoint accepts POST requests with an
|
|
||||||
image file in the 'upload' field. The image is processed using the ultimateALPR SDK and the license plate
|
The server listens on port 5000 and has a few endpoints documented below, the most important one being [``/v1/image/alpr``](#v1visionalpr).
|
||||||
information is returned in JSON format. The reponse follows the CodeProject AI ALPR API format. So it can be used
|
|
||||||
as a drop-in replacement for the [CodeProject AI ALPR API](https://www.codeproject.com/AI/docs/api/api_reference.html#license-plate-reader).
|
### /v1/vision/alpr
|
||||||
|
|
||||||
> POST: http://localhost:5000/v1/vision/alpr
|
> POST: http://localhost:5000/v1/vision/alpr
|
||||||
|
|
||||||
|
**Description**
|
||||||
|
This endpoint processes an image and returns the license plate information (if any) found in the image.
|
||||||
**Parameters**
|
**Parameters**
|
||||||
- upload: (File) The image file to process. (see [Pillow.Image.open()](https://pillow.readthedocs.io/en/stable/reference/Image.html#PIL.Image.open) for supported formats)
|
|
||||||
- grid_size: (Integer, optional) The grid size to use when no match have been found on the whole image (default: 4)
|
- upload: (File) The image file to process. *(
|
||||||
- wanted_cells: (String, optional) The wanted cells to use when no match have been found on the whole image (default: all cells)
|
see [Pillow.Image.open()](https://pillow.readthedocs.io/en/stable/reference/Image.html#PIL.Image.open) for supported
|
||||||
- format: ``1,2,3,4,...`` *(comma separated list of integers, max: grid_size^2)*
|
formats, almost any image format is supported)*
|
||||||
|
- grid_size: (Integer, optional) Size of grid to divide the image into and retry on each cell when no match have been
|
||||||
|
found on the whole image, must be ``>=2`` *(default: 0, disabled)* **[(more info)](#more-information-about-the-grid-parameter)**
|
||||||
|
- wanted_cells: (String, optional) The cells you want to process *(default: all cells)* **[(see here for more details)](#v1visionalpr_grid_debug)**
|
||||||
|
- format: ``1,2,3,4,...`` *(comma separated list of integers, max: ``grid_size^2``)*
|
||||||
- *Example for a grid_size of 3:*
|
- *Example for a grid_size of 3:*
|
||||||
```
|
```
|
||||||
1 | 2 | 3
|
1 | 2 | 3
|
||||||
4 | 5 | 6
|
4 | 5 | 6
|
||||||
7 | 8 | 9
|
7 | 8 | 9
|
||||||
```
|
```
|
||||||
|
- whole_image_fallback: (Boolean, optional) Only applies when ``grid_size`` is greater than 2.
|
||||||
|
If set to true, the server will first try to detect the plate from the ``wanted_cells`` parameter and if no plate is found, it will then try to detect the plate on the whole image.
|
||||||
|
If set to false, the server will only try to detect the plate on the specified cells. *(default: true)*
|
||||||
|
|
||||||
**Response**
|
**Response**
|
||||||
|
|
||||||
|
```jsonc
|
||||||
|
{
|
||||||
|
"duration": (Float) // The time taken to process the image in milliseconds.
|
||||||
|
"plates": List // An array of plates found in the image.
|
||||||
|
"predictions": (Object[]) // An array of objects with the x_max, x_min, y_max, y_min bounds of the plate, image, the plate chars and confidence.
|
||||||
|
}
|
||||||
|
```
|
||||||
|
|
||||||
|
**Example**
|
||||||
```json
|
```json
|
||||||
{
|
{
|
||||||
"success": (Boolean) // True if successful.
|
"duration": 142.02,
|
||||||
"message": (String) // A summary of the inference operation.
|
"plates": [
|
||||||
"error": (String) // (Optional) An description of the error if success was false.
|
"XX12345*",
|
||||||
"predictions": (Object[]) // An array of objects with the x_max, x_min, max, y_min bounds of the plate, label, the plate chars and confidence.
|
"YY5432*"
|
||||||
"processMs": (Integer) // The time (ms) to process the image (includes inference and image manipulation operations).
|
],
|
||||||
|
"predictions": [
|
||||||
|
{
|
||||||
|
"confidence": 0.9009034,
|
||||||
|
"image": "",
|
||||||
|
"plate": "XX12345*",
|
||||||
|
"x_max": 680,
|
||||||
|
"x_min": 610,
|
||||||
|
"y_max": 386,
|
||||||
|
"y_min": 355
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"confidence": 0.8930383999999999,
|
||||||
|
"image": "",
|
||||||
|
"plate": "YY5432*",
|
||||||
|
"x_max": 680,
|
||||||
|
"x_min": 483,
|
||||||
|
"y_max": 706,
|
||||||
|
"y_min": 624
|
||||||
|
}
|
||||||
|
]
|
||||||
}
|
}
|
||||||
```
|
```
|
||||||
|
|
||||||
|
|
||||||
|
### /v1/vision/alpr_grid_debug
|
||||||
|
|
||||||
|
> POST: http://localhost:5000/v1/vision/alpr_grid_debug
|
||||||
|
|
||||||
|
**Description**
|
||||||
|
This endpoint displays the grid and each cell's number on the image.
|
||||||
|
It is intended to be used for debugging purposes to see which cells are being processed.
|
||||||
|
|
||||||
|
**Parameters**
|
||||||
|
*same as [v1/vision/alpr](#v1visionalpr)*
|
||||||
|
|
||||||
|
**Response**
|
||||||
|
|
||||||
|
```jsonc
|
||||||
|
{
|
||||||
|
"image": (Base64) // The image with the grid and cell numbers drawn on it.
|
||||||
|
}
|
||||||
|
```
|
||||||
|
|
||||||
|
## More information about the grid parameter
|
||||||
|
|
||||||
|
Sometimes, the ALPR software cannot find any plate because the image is too big or the plate is too small in the image.
|
||||||
|
To solve this problem, you can make use of the ``grid_size`` parameter in each of your requests.
|
||||||
|
If you set the ``grid_size`` parameter to a value greater than 2, the server will divide the image into a grid of cells
|
||||||
|
and retry the ALPR software on each cell.
|
||||||
|
|
||||||
|
You can speed up the processing time by specifying the ``wanted_cells`` parameter. This parameter allows you to specify
|
||||||
|
which cells you want to run plate detection on.
|
||||||
|
This can be useful if you know the plates can only be in certain areas of the image.
|
||||||
|
> [!TIP]
|
||||||
|
> You can use the [``/v1/vision/alpr_grid_debug`` endpoint](#v1visionalpr_grid_debug) to see the grid and cell numbers
|
||||||
|
> overlaid on your image.
|
||||||
|
> You can then specify the ``wanted_cells`` parameter to only process the cells you want.
|
||||||
|
|
||||||
|
**If you wish not to use the grid, you can set the ``grid_size`` parameter to
|
||||||
|
0 or leave it empty *(and leave the ``wanted_cells`` parameter empty)*.**
|
||||||
|
|
||||||
|
### Example
|
||||||
|
|
||||||
|
Let's say your driveway camera looks something like this:
|
||||||
|
|
||||||
|

|
||||||
|
|
||||||
|
If you set the ``grid_size`` parameter to 2, the image will be divided into a 2x2 grid like this:
|
||||||
|
|
||||||
|

|
||||||
|
|
||||||
|
You can see that cell 1 and 2 are empty and cells 3 and 4 might contain license plates.
|
||||||
|
You can then set the ``wanted_cells`` parameter to ``3,4`` to only process cells 3 and 4, reducing the processing time
|
||||||
|
as only half the image will be processed.
|
||||||
|
|
||||||
## Included models in built executable
|
## Included models in built executable
|
||||||
When using the built executable, only the **latin** charset models are bundled by default. If you want to use a different
|
|
||||||
charset, you need to set the charset in the JSON_CONFIG variable and rebuild the executable with the according
|
When using the built executable, only the **latin** charset models are bundled by default. If you want to use a
|
||||||
models found [here](https://github.com/DoubangoTelecom/ultimateALPR-SDK/tree/master/assets)
|
different charset, you need to set the charset in the JSON_CONFIG variable and rebuild the executable with the
|
||||||
To build the executable, you can use the ``build_alpr_api.sh`` script, which will create an executable named ``alpr_api`` in
|
according models found [here](https://github.com/DoubangoTelecom/ultimateALPR-SDK/tree/master/assets)
|
||||||
the ``dist`` folder.
|
To build the executable, you can use the ``build_alpr_api.sh`` script, which will create an executable
|
||||||
|
named ``alpr_api`` in the ``dist`` folder.
|
||||||
|
|
||||||
## Setup development environment
|
## Setup development environment
|
||||||
|
|
||||||
### Use automatic setup script
|
### Use automatic setup script
|
||||||
You can use the ``build_and_setup_ultimatealvr.sh`` script to automatically install the necessary packages and build the ultimateALPR SDK wheel, copy the assets and the libs.
|
|
||||||
> [!IMPORTANT]
|
> [!IMPORTANT]
|
||||||
> Make sure to install the package python3-dev (APT) python3-devel (RPM) before running the build and setup script.
|
> Make sure to install the package python3-dev (APT) python3-devel (RPM) before running the build and setup script.
|
||||||
|
> You can use the ``build_and_setup_ultimatealvr.sh`` script to automatically install the necessary packages and build
|
||||||
|
> the
|
||||||
|
> ultimateALPR SDK wheel, copy the assets and the libs.
|
||||||
|
|
||||||
The end structure should look like this:
|
The end structure should look like this:
|
||||||
|
|
||||||
```bash
|
```bash
|
||||||
.
|
.
|
||||||
├── alpr_api.py
|
├── alpr_api.py
|
||||||
@ -74,16 +181,23 @@ The end structure should look like this:
|
|||||||
```
|
```
|
||||||
|
|
||||||
### Important notes
|
### Important notes
|
||||||
When running, building or developing the script, make sure to set the ``LD_LIBRARY_PATH`` environment variable to the libs folder
|
|
||||||
|
When running, building or developing the script, make sure to set the ``LD_LIBRARY_PATH`` environment variable to the
|
||||||
|
libs folder
|
||||||
*(limitation of the ultimateALPR SDK)*.
|
*(limitation of the ultimateALPR SDK)*.
|
||||||
|
|
||||||
```bash
|
```bash
|
||||||
export LD_LIBRARY_PATH=libs:$LD_LIBRARY_PATH
|
export LD_LIBRARY_PATH=libs:$LD_LIBRARY_PATH
|
||||||
```
|
```
|
||||||
|
|
||||||
### Error handling
|
### Error handling
|
||||||
|
|
||||||
#### GLIBC_ABI_DT_RELR not found
|
#### GLIBC_ABI_DT_RELR not found
|
||||||
|
|
||||||
If you encounter an error like this:
|
If you encounter an error like this:
|
||||||
|
|
||||||
```bash
|
```bash
|
||||||
/lib/x86_64-linux-gnu/libc.so.6: version `GLIBC_ABI_DT_RELR' not found
|
/lib/x86_64-linux-gnu/libc.so.6: version `GLIBC_ABI_DT_RELR' not found
|
||||||
```
|
```
|
||||||
|
|
||||||
Then make sure your GLIBC version is >= 2.36
|
Then make sure your GLIBC version is >= 2.36
|
||||||
|
375
alpr_api.py
375
alpr_api.py
@ -1,12 +1,15 @@
|
|||||||
|
import base64
|
||||||
|
import io
|
||||||
import json
|
import json
|
||||||
import logging
|
import logging
|
||||||
import os
|
import os
|
||||||
import sys
|
import sys
|
||||||
import threading
|
import threading
|
||||||
import time
|
import time
|
||||||
|
import traceback
|
||||||
|
|
||||||
import ultimateAlprSdk
|
import ultimateAlprSdk
|
||||||
from PIL import Image
|
from PIL import Image, ImageDraw, ImageFont
|
||||||
from flask import Flask, request, jsonify, render_template
|
from flask import Flask, request, jsonify, render_template
|
||||||
|
|
||||||
# Setup logging
|
# Setup logging
|
||||||
@ -27,9 +30,9 @@ information. The server is created using Flask and the ultimateALPR SDK is used
|
|||||||
See the README.md file for more information on how to run this script.
|
See the README.md file for more information on how to run this script.
|
||||||
"""
|
"""
|
||||||
|
|
||||||
# Load configuration from a JSON file or environment variables
|
# Load configuration
|
||||||
CONFIG_PATH = os.path.join(bundle_dir,
|
CONFIG_PATH = os.path.join(bundle_dir,
|
||||||
'config.json') # TODO: store config file outside of bundle (to avoid compilation by users)
|
'config.json') # TODO: store config file outside of bundle (to remove need for compilation by users)
|
||||||
if os.path.exists(CONFIG_PATH):
|
if os.path.exists(CONFIG_PATH):
|
||||||
with open(CONFIG_PATH, 'r') as config_file:
|
with open(CONFIG_PATH, 'r') as config_file:
|
||||||
JSON_CONFIG = json.load(config_file)
|
JSON_CONFIG = json.load(config_file)
|
||||||
@ -38,14 +41,14 @@ else:
|
|||||||
"assets_folder": os.path.join(bundle_dir, "assets"),
|
"assets_folder": os.path.join(bundle_dir, "assets"),
|
||||||
"charset": "latin",
|
"charset": "latin",
|
||||||
"car_noplate_detect_enabled": False,
|
"car_noplate_detect_enabled": False,
|
||||||
"ienv_enabled": False,
|
"ienv_enabled": True, # night vision enhancements
|
||||||
"openvino_enabled": True,
|
"openvino_enabled": True,
|
||||||
"openvino_device": "CPU",
|
"openvino_device": "CPU",
|
||||||
"npu_enabled": False,
|
"npu_enabled": False,
|
||||||
"klass_lpci_enabled": False,
|
"klass_lpci_enabled": False, # License Plate Country Identification
|
||||||
"klass_vcr_enabled": False,
|
"klass_vcr_enabled": False, # Vehicle Color Recognition (paid)
|
||||||
"klass_vmmr_enabled": False,
|
"klass_vmmr_enabled": False, # Vehicle Make and Model Recognition
|
||||||
"klass_vbsr_enabled": False,
|
"klass_vbsr_enabled": False, # Vehicle Body Style Recognition (paid)
|
||||||
"license_token_file": "",
|
"license_token_file": "",
|
||||||
"license_token_data": "",
|
"license_token_data": "",
|
||||||
|
|
||||||
@ -84,11 +87,11 @@ def start_backend_loop():
|
|||||||
load_engine()
|
load_engine()
|
||||||
|
|
||||||
# loop for about an hour or 3000 requests then reload the engine (fix for trial license)
|
# loop for about an hour or 3000 requests then reload the engine (fix for trial license)
|
||||||
while counter < 3000 and time.time() - boot_time < 60 * 60:
|
while counter < 3000 and time.time() - boot_time < 3600:
|
||||||
# every 120 sec
|
# every 120 sec
|
||||||
if int(time.time()) % 120 == 0:
|
if int(time.time()) % 120 == 0:
|
||||||
if not is_engine_loaded():
|
if not is_engine_loaded():
|
||||||
unload_engine() # just in case
|
unload_engine()
|
||||||
load_engine()
|
load_engine()
|
||||||
time.sleep(1)
|
time.sleep(1)
|
||||||
|
|
||||||
@ -123,24 +126,16 @@ def process_image(image: Image) -> str:
|
|||||||
counter += 1
|
counter += 1
|
||||||
|
|
||||||
width, height = image.size
|
width, height = image.size
|
||||||
|
image_type = IMAGE_TYPES_MAPPING.get(image.mode, None)
|
||||||
if image.mode in IMAGE_TYPES_MAPPING:
|
if image_type is None:
|
||||||
image_type = IMAGE_TYPES_MAPPING[image.mode]
|
raise ValueError(f"Invalid mode: {image.mode}")
|
||||||
else:
|
|
||||||
raise ValueError("Invalid mode: %s" % image.mode)
|
|
||||||
|
|
||||||
result = ultimateAlprSdk.UltAlprSdkEngine_process(
|
result = ultimateAlprSdk.UltAlprSdkEngine_process(
|
||||||
image_type,
|
image_type, image.tobytes(), width, height, 0, 1
|
||||||
image.tobytes(),
|
|
||||||
width,
|
|
||||||
height,
|
|
||||||
0, # stride
|
|
||||||
1 # exifOrientation
|
|
||||||
)
|
)
|
||||||
if not result.isOK():
|
if not result.isOK():
|
||||||
raise RuntimeError("Process failed: %s" % result.phrase())
|
raise RuntimeError(f"Process failed: {result.phrase()}")
|
||||||
else:
|
return result.json()
|
||||||
return result.json()
|
|
||||||
|
|
||||||
|
|
||||||
def create_rest_server_flask():
|
def create_rest_server_flask():
|
||||||
@ -149,44 +144,101 @@ def create_rest_server_flask():
|
|||||||
@app.route('/v1/image/alpr', methods=['POST'])
|
@app.route('/v1/image/alpr', methods=['POST'])
|
||||||
def alpr():
|
def alpr():
|
||||||
"""
|
"""
|
||||||
This function is called when a POST request is made to the /v1/image/alpr endpoint.
|
|
||||||
The function receives an image and processes it using the ultimateALPR SDK.
|
The function receives an image and processes it using the ultimateALPR SDK.
|
||||||
|
|
||||||
Parameters:
|
Parameters:
|
||||||
- upload: The image to be processed
|
- upload: The image to be processed
|
||||||
- grid_size: The number of cells to split the image into (e.g. 4)
|
- grid_size: The number of cells to split the image into (e.g. 3)
|
||||||
- wanted_cells: The cells to process in the grid separated by commas (e.g. 1,2,3,4) (max: grid_size²)
|
- wanted_cells: The cells to process in the grid separated by commas (e.g. 1,2,3,4) (max: grid_size²)
|
||||||
|
- whole_image_fallback: If set to true, the whole image will be processed if no plates are found in the specified cells. (default: true)
|
||||||
"""
|
"""
|
||||||
interference = time.time()
|
interference = time.time()
|
||||||
|
whole_image_fallback = request.form.get('whole_image_fallback', 'true').lower() == 'true'
|
||||||
|
|
||||||
if 'upload' not in request.files:
|
try:
|
||||||
return jsonify({'error': 'No image found'}), 400
|
if 'upload' not in request.files:
|
||||||
|
return jsonify({'error': 'No image found'}), 400
|
||||||
|
|
||||||
grid_size = int(request.form.get('grid_size', 3))
|
grid_size = int(request.form.get('grid_size', 1))
|
||||||
wanted_cells = request.form.get('wanted_cells')
|
wanted_cells = _get_wanted_cells_from_request(request, grid_size)
|
||||||
if wanted_cells:
|
|
||||||
wanted_cells = [int(cell) for cell in wanted_cells.split(',')]
|
|
||||||
else:
|
|
||||||
wanted_cells = list(range(1, grid_size * grid_size + 1))
|
|
||||||
|
|
||||||
image = request.files['upload']
|
image_file = request.files['upload']
|
||||||
if image.filename == '':
|
if image_file.filename == '':
|
||||||
return jsonify({'error': 'No selected file'}), 400
|
return jsonify({'error': 'No selected file'}), 400
|
||||||
|
|
||||||
image = Image.open(image)
|
image = _load_image_from_request(request)
|
||||||
result = process_image(image)
|
|
||||||
result = convert_to_cpai_compatible(result)
|
|
||||||
|
|
||||||
if not result['predictions']:
|
result = {
|
||||||
logger.debug("No plate found in the image, attempting to split the image")
|
'predictions': [],
|
||||||
predictions_found = find_best_plate_with_split(image, grid_size, wanted_cells)
|
'plates': [],
|
||||||
|
'duration': 0
|
||||||
|
}
|
||||||
|
|
||||||
if predictions_found:
|
if grid_size < 2:
|
||||||
result['predictions'].append(max(predictions_found, key=lambda x: x['confidence']))
|
logger.debug("Grid size < 2, processing the whole image")
|
||||||
|
response = process_image(image)
|
||||||
|
result.update(_parse_result_from_ultimatealpr(response))
|
||||||
|
else:
|
||||||
|
logger.debug(f"Grid size: {grid_size}, processing specified cells: {wanted_cells}")
|
||||||
|
predictions_found = _find_best_plate_with_grid_split(image, grid_size, wanted_cells)
|
||||||
|
result['predictions'].extend(predictions_found)
|
||||||
|
|
||||||
result['processMs'] = round((time.time() - interference) * 1000, 2)
|
if not result['predictions']:
|
||||||
result['inferenceMs'] = result['processMs']
|
if grid_size >= 2 and whole_image_fallback:
|
||||||
return jsonify(result)
|
logger.debug("No plates found in the specified cells, trying whole image as last resort")
|
||||||
|
response = process_image(image)
|
||||||
|
result.update(_parse_result_from_ultimatealpr(response))
|
||||||
|
|
||||||
|
if result['predictions'] and len(result['predictions']) > 0:
|
||||||
|
all_plates = []
|
||||||
|
for plate in result['predictions']:
|
||||||
|
all_plates.append(plate.get('plate'))
|
||||||
|
isolated_plate_image = isolate_plate_in_image(image, plate)
|
||||||
|
plate['image'] = f"data:image/png;base64,{image_to_base64(isolated_plate_image, compress=True)}"
|
||||||
|
|
||||||
|
result['plates'] = all_plates
|
||||||
|
|
||||||
|
duration = round((time.time() - interference) * 1000, 2)
|
||||||
|
result.update({'duration': duration})
|
||||||
|
return jsonify(result)
|
||||||
|
except Exception as e:
|
||||||
|
logger.error(f"Error processing image: {e}")
|
||||||
|
logger.error(traceback.format_exc())
|
||||||
|
return jsonify({'error': 'Error processing image'}), 500
|
||||||
|
|
||||||
|
@app.route('/v1/image/alpr_grid_debug', methods=['POST'])
|
||||||
|
def alpr_grid_debug():
|
||||||
|
"""
|
||||||
|
The function receives an image and returns it with the grid overlayed on it (for debugging purposes).
|
||||||
|
|
||||||
|
Parameters:
|
||||||
|
- upload: The image to be processed
|
||||||
|
- grid_size: The number of cells to split the image into (e.g. 3)
|
||||||
|
- wanted_cells: The cells to process in the grid separated by commas (e.g. 1,2,3,4) (max: grid_size²)
|
||||||
|
|
||||||
|
Returns:
|
||||||
|
- The image with the grid overlayed on it
|
||||||
|
"""
|
||||||
|
try:
|
||||||
|
if 'upload' not in request.files:
|
||||||
|
return jsonify({'error': 'No image found'}), 400
|
||||||
|
|
||||||
|
grid_size = int(request.form.get('grid_size', 3))
|
||||||
|
wanted_cells = _get_wanted_cells_from_request(request, grid_size)
|
||||||
|
|
||||||
|
image_file = request.files['upload']
|
||||||
|
if image_file.filename == '':
|
||||||
|
return jsonify({'error': 'No selected file'}), 400
|
||||||
|
|
||||||
|
image = _load_image_from_request(request)
|
||||||
|
image = draw_grid_and_cell_numbers_on_image(image, grid_size, wanted_cells)
|
||||||
|
|
||||||
|
image_base64 = image_to_base64(image, compress=True)
|
||||||
|
return jsonify({"image": f"data:image/png;base64,{image_base64}"})
|
||||||
|
except Exception as e:
|
||||||
|
logger.error(f"Error processing image: {e}")
|
||||||
|
logger.error(traceback.format_exc())
|
||||||
|
return jsonify({'error': 'Error processing image'}), 500
|
||||||
|
|
||||||
@app.route('/')
|
@app.route('/')
|
||||||
def index():
|
def index():
|
||||||
@ -195,56 +247,78 @@ def create_rest_server_flask():
|
|||||||
return app
|
return app
|
||||||
|
|
||||||
|
|
||||||
def convert_to_cpai_compatible(result):
|
def _get_wanted_cells_from_request(request, grid_size) -> list:
|
||||||
result = json.loads(result)
|
"""
|
||||||
|
Helper function to extract wanted cells from the request.
|
||||||
|
If no cells are specified, it returns all cells in the grid.
|
||||||
|
"""
|
||||||
|
wanted_cells = request.form.get('wanted_cells')
|
||||||
|
if wanted_cells:
|
||||||
|
wanted_cells = [int(cell) for cell in wanted_cells.split(',')]
|
||||||
|
else:
|
||||||
|
wanted_cells = list(range(1, grid_size * grid_size + 1))
|
||||||
|
|
||||||
|
if not all(1 <= cell <= grid_size * grid_size for cell in wanted_cells):
|
||||||
|
raise ValueError("Invalid cell numbers provided.")
|
||||||
|
|
||||||
|
return wanted_cells
|
||||||
|
|
||||||
|
|
||||||
|
def _load_image_from_request(request) -> Image:
|
||||||
|
"""
|
||||||
|
Helper function to load an image from the request.
|
||||||
|
It expects the image to be in the 'upload' field of the request.
|
||||||
|
"""
|
||||||
|
if 'upload' not in request.files:
|
||||||
|
raise ValueError("No image found in request.")
|
||||||
|
|
||||||
|
image_file = request.files['upload']
|
||||||
|
if image_file.filename == '':
|
||||||
|
raise ValueError("No selected file.")
|
||||||
|
|
||||||
|
try:
|
||||||
|
image = Image.open(image_file)
|
||||||
|
return correct_image_orientation(image)
|
||||||
|
except Exception as e:
|
||||||
|
raise ValueError(f"Error loading image: {e}")
|
||||||
|
|
||||||
|
|
||||||
|
def _parse_result_from_ultimatealpr(result) -> dict:
|
||||||
|
result = json.loads(result)
|
||||||
response = {
|
response = {
|
||||||
'success': "true",
|
|
||||||
'processMs': result['duration'],
|
|
||||||
'inferenceMs': result['duration'],
|
|
||||||
'predictions': [],
|
'predictions': [],
|
||||||
'message': '',
|
|
||||||
'moduleId': 'ALPR',
|
|
||||||
'moduleName': 'License Plate Reader',
|
|
||||||
'code': 200,
|
|
||||||
'command': 'alpr',
|
|
||||||
'requestId': 'null',
|
|
||||||
'inferenceDevice': 'none',
|
|
||||||
'analysisRoundTripMs': 0,
|
|
||||||
'processedBy': 'none',
|
|
||||||
'timestamp': ''
|
|
||||||
}
|
}
|
||||||
|
|
||||||
if 'plates' in result:
|
for plate in result.get('plates', []):
|
||||||
plates = result['plates']
|
warpedBox = plate['warpedBox']
|
||||||
for plate in plates:
|
x_coords = warpedBox[0::2]
|
||||||
warpedBox = plate['warpedBox']
|
y_coords = warpedBox[1::2]
|
||||||
x_coords = warpedBox[0::2]
|
x_min, x_max = min(x_coords), max(x_coords)
|
||||||
y_coords = warpedBox[1::2]
|
y_min, y_max = min(y_coords), max(y_coords)
|
||||||
x_min = min(x_coords)
|
|
||||||
x_max = max(x_coords)
|
|
||||||
y_min = min(y_coords)
|
|
||||||
y_max = max(y_coords)
|
|
||||||
|
|
||||||
response['predictions'].append({
|
|
||||||
'confidence': plate['confidences'][0] / 100,
|
|
||||||
'label': "Plate: " + plate['text'],
|
|
||||||
'plate': plate['text'],
|
|
||||||
'x_min': x_min,
|
|
||||||
'x_max': x_max,
|
|
||||||
'y_min': y_min,
|
|
||||||
'y_max': y_max
|
|
||||||
})
|
|
||||||
|
|
||||||
|
response['predictions'].append({
|
||||||
|
'confidence': plate['confidences'][0] / 100,
|
||||||
|
'plate': plate['text'],
|
||||||
|
'x_min': x_min,
|
||||||
|
'x_max': x_max,
|
||||||
|
'y_min': y_min,
|
||||||
|
'y_max': y_max
|
||||||
|
})
|
||||||
return response
|
return response
|
||||||
|
|
||||||
|
|
||||||
def find_best_plate_with_split(image: Image, grid_size: int = 3, wanted_cells: list = None):
|
def _find_best_plate_with_grid_split(image: Image, grid_size: int = 3, wanted_cells: list = None,
|
||||||
if wanted_cells is None:
|
stop_at_first_match: bool = False) -> list:
|
||||||
wanted_cells = list(range(1, grid_size * grid_size + 1))
|
"""
|
||||||
|
Splits the image into a grid and processes each cell to find the best plate.
|
||||||
|
Returns a list of predictions found in the specified cells.
|
||||||
|
"""
|
||||||
|
|
||||||
|
if grid_size < 2:
|
||||||
|
logger.debug("Grid size < 2, skipping split")
|
||||||
|
return []
|
||||||
|
|
||||||
predictions_found = []
|
predictions_found = []
|
||||||
|
|
||||||
width, height = image.size
|
width, height = image.size
|
||||||
cell_width = width // grid_size
|
cell_width = width // grid_size
|
||||||
cell_height = height // grid_size
|
cell_height = height // grid_size
|
||||||
@ -259,31 +333,120 @@ def find_best_plate_with_split(image: Image, grid_size: int = 3, wanted_cells: l
|
|||||||
|
|
||||||
if cell_index in wanted_cells:
|
if cell_index in wanted_cells:
|
||||||
cell_image = image.crop((left, upper, right, lower))
|
cell_image = image.crop((left, upper, right, lower))
|
||||||
result_cell = json.loads(process_image(cell_image))
|
result = process_image(cell_image)
|
||||||
|
logger.info(f"Processed image with result (grid): {result}")
|
||||||
|
result_cell = json.loads(result)
|
||||||
|
|
||||||
if 'plates' in result_cell:
|
for plate in result_cell.get('plates', []):
|
||||||
for plate in result_cell['plates']:
|
warpedBox = plate['warpedBox']
|
||||||
warpedBox = plate['warpedBox']
|
x_coords = warpedBox[0::2]
|
||||||
x_coords = warpedBox[0::2]
|
y_coords = warpedBox[1::2]
|
||||||
y_coords = warpedBox[1::2]
|
x_min = min(x_coords) + left
|
||||||
x_min = min(x_coords) + left
|
x_max = max(x_coords) + left
|
||||||
x_max = max(x_coords) + left
|
y_min = min(y_coords) + upper
|
||||||
y_min = min(y_coords) + upper
|
y_max = max(y_coords) + upper
|
||||||
y_max = max(y_coords) + upper
|
|
||||||
|
|
||||||
predictions_found.append({
|
predictions_found.append({
|
||||||
'confidence': plate['confidences'][0] / 100,
|
'confidence': plate['confidences'][0] / 100,
|
||||||
'label': "Plate: " + plate['text'],
|
'plate': plate['text'],
|
||||||
'plate': plate['text'],
|
'x_min': x_min,
|
||||||
'x_min': x_min,
|
'x_max': x_max,
|
||||||
'x_max': x_max,
|
'y_min': y_min,
|
||||||
'y_min': y_min,
|
'y_max': y_max
|
||||||
'y_max': y_max
|
})
|
||||||
})
|
|
||||||
|
if stop_at_first_match:
|
||||||
|
logger.debug(f"Found plate in cell {cell_index}: {plate['text']}")
|
||||||
|
return predictions_found
|
||||||
|
|
||||||
return predictions_found
|
return predictions_found
|
||||||
|
|
||||||
|
|
||||||
|
def draw_grid_and_cell_numbers_on_image(image: Image, grid_size: int = 3, wanted_cells: list = None) -> Image:
|
||||||
|
"""
|
||||||
|
Draws a grid on the image and numbers the cells.
|
||||||
|
"""
|
||||||
|
|
||||||
|
if grid_size < 1:
|
||||||
|
grid_size = 1
|
||||||
|
|
||||||
|
if wanted_cells is None:
|
||||||
|
wanted_cells = list(range(1, grid_size * grid_size + 1))
|
||||||
|
|
||||||
|
width, height = image.size
|
||||||
|
cell_width = width // grid_size
|
||||||
|
cell_height = height // grid_size
|
||||||
|
|
||||||
|
draw = ImageDraw.Draw(image)
|
||||||
|
font = ImageFont.truetype(os.path.join(bundle_dir, 'assets', 'fonts', 'GlNummernschildEng-XgWd.ttf'),
|
||||||
|
image.size[0] // 10)
|
||||||
|
|
||||||
|
for cell_index in range(1, grid_size * grid_size + 1):
|
||||||
|
row = (cell_index - 1) // grid_size
|
||||||
|
col = (cell_index - 1) % grid_size
|
||||||
|
left = col * cell_width
|
||||||
|
upper = row * cell_height
|
||||||
|
right = left + cell_width
|
||||||
|
lower = upper + cell_height
|
||||||
|
|
||||||
|
if cell_index in wanted_cells:
|
||||||
|
draw.rectangle([left, upper, right, lower], outline="red", width=4)
|
||||||
|
draw.text((left + 5, upper + 5), str(cell_index), fill="red", font=font)
|
||||||
|
|
||||||
|
return image
|
||||||
|
|
||||||
|
|
||||||
|
def isolate_plate_in_image(image: Image, plate: dict, offset=10) -> Image:
|
||||||
|
"""
|
||||||
|
Isolates the plate area in the image and returns a cropped and resized image.
|
||||||
|
"""
|
||||||
|
|
||||||
|
x_min, x_max = plate.get('x_min'), plate.get('x_max')
|
||||||
|
y_min, y_max = plate.get('y_min'), plate.get('y_max')
|
||||||
|
|
||||||
|
cropped_image = image.crop((max(0, x_min - offset), max(0, y_min - offset), min(image.size[0], x_max + offset),
|
||||||
|
min(image.size[1], y_max + offset)))
|
||||||
|
resized_image = cropped_image.resize((int(cropped_image.size[0] * 3), int(cropped_image.size[1] * 3)),
|
||||||
|
resample=Image.Resampling.LANCZOS)
|
||||||
|
|
||||||
|
return resized_image
|
||||||
|
|
||||||
|
|
||||||
|
def image_to_base64(img: Image, compress=False) -> str:
|
||||||
|
"""Convert a Pillow image to a base64-encoded string."""
|
||||||
|
|
||||||
|
buffered = io.BytesIO()
|
||||||
|
if compress:
|
||||||
|
img = img.resize((img.size[0] // 2, img.size[1] // 2))
|
||||||
|
img.save(buffered, format="WEBP", quality=35, lossless=False)
|
||||||
|
else:
|
||||||
|
img.save(buffered, format="WEBP")
|
||||||
|
|
||||||
|
return base64.b64encode(buffered.getvalue()).decode('utf-8')
|
||||||
|
|
||||||
|
|
||||||
|
from PIL import Image, ExifTags
|
||||||
|
|
||||||
|
|
||||||
|
def correct_image_orientation(img):
|
||||||
|
try:
|
||||||
|
exif = img._getexif()
|
||||||
|
if exif is not None:
|
||||||
|
orientation_key = next(
|
||||||
|
(k for k, v in ExifTags.TAGS.items() if v == 'Orientation'), None)
|
||||||
|
if orientation_key is not None:
|
||||||
|
orientation = exif.get(orientation_key)
|
||||||
|
if orientation == 3:
|
||||||
|
img = img.rotate(180, expand=True)
|
||||||
|
elif orientation == 6:
|
||||||
|
img = img.rotate(270, expand=True)
|
||||||
|
elif orientation == 8:
|
||||||
|
img = img.rotate(90, expand=True)
|
||||||
|
except Exception as e:
|
||||||
|
print("EXIF orientation correction failed:", e)
|
||||||
|
return img
|
||||||
|
|
||||||
|
|
||||||
if __name__ == '__main__':
|
if __name__ == '__main__':
|
||||||
engine_thread = threading.Thread(target=start_backend_loop, daemon=True)
|
engine_thread = threading.Thread(target=start_backend_loop, daemon=True)
|
||||||
engine_thread.start()
|
engine_thread.start()
|
||||||
|
@ -1,2 +1,14 @@
|
|||||||
pyinstaller --noconfirm --console --add-data libs:. --add-data assets:assets --add-data static:static --add-data templates:templates --name easy-local-alpr-1.4.0-openvinocpu_linux_x86_64 "alpr_api.py"
|
#!/bin/bash
|
||||||
# optional: --onefile
|
|
||||||
|
VERSION=1.6.0
|
||||||
|
|
||||||
|
rm -rf buildenv build dist *.spec
|
||||||
|
python3.10 -m venv buildenv
|
||||||
|
source buildenv/bin/activate
|
||||||
|
python3.10 -m pip install --upgrade pip pyinstaller
|
||||||
|
python3.10 -m pip install ./wheel/ultimateAlprSdk-3.14.1-cp310-cp310-linux_x86_64.whl
|
||||||
|
pip install -r requirements.txt
|
||||||
|
|
||||||
|
pyinstaller --noconfirm --onefile --console --add-data libs:. --add-data assets:assets --add-data static:static --add-data templates:templates --name easy-local-alpr-$VERSION-openvinocpu_linux_x86_64 "alpr_api.py"
|
||||||
|
deactivate
|
||||||
|
rm -rf buildenv
|
@ -1,5 +1,7 @@
|
|||||||
#!/bin/bash
|
#!/bin/bash
|
||||||
|
|
||||||
|
deactivate 2>/dev/null
|
||||||
|
|
||||||
# Function to create virtual environment, install the wheel, and copy assets and libs
|
# Function to create virtual environment, install the wheel, and copy assets and libs
|
||||||
install_and_setup() {
|
install_and_setup() {
|
||||||
echo "Creating virtual environment at the root..."
|
echo "Creating virtual environment at the root..."
|
||||||
@ -55,10 +57,10 @@ prompt_auto_setup() {
|
|||||||
esac
|
esac
|
||||||
}
|
}
|
||||||
|
|
||||||
# Directories
|
# Variables
|
||||||
ROOT_DIR=$(pwd)
|
ROOT_DIR=$(pwd)
|
||||||
BUILD_DIR="$ROOT_DIR/tmp-build-env"
|
BUILD_DIR="$ROOT_DIR/tmp-build-env"
|
||||||
SDK_ZIP_URL="https://github.com/DoubangoTelecom/ultimateALPR-SDK/archive/8130c76140fe8edc60fe20f875796121a8d22fed.zip"
|
SDK_ZIP_URL="https://github.com/DoubangoTelecom/ultimateALPR-SDK/archive/febe9921e7dd37e64901d84cad01d51eca6c6a71.zip" # 3.14.1
|
||||||
SDK_ZIP="$BUILD_DIR/temp-sdk.zip"
|
SDK_ZIP="$BUILD_DIR/temp-sdk.zip"
|
||||||
SDK_DIR="$BUILD_DIR/temp-sdk"
|
SDK_DIR="$BUILD_DIR/temp-sdk"
|
||||||
BIN_DIR="$SDK_DIR/binaries/linux/x86_64"
|
BIN_DIR="$SDK_DIR/binaries/linux/x86_64"
|
||||||
@ -69,7 +71,12 @@ cd "$BUILD_DIR" || exit
|
|||||||
|
|
||||||
# Clone SDK
|
# Clone SDK
|
||||||
echo "Downloading SDK..."
|
echo "Downloading SDK..."
|
||||||
wget "$SDK_ZIP_URL" -O "$SDK_ZIP" >/dev/null 2>&1
|
if [ -f "$SDK_ZIP" ]; then
|
||||||
|
echo "SDK zip already exists."
|
||||||
|
rm -R "$SDK_DIR"
|
||||||
|
else
|
||||||
|
wget "$SDK_ZIP_URL" -O "$SDK_ZIP" >/dev/null 2>&1
|
||||||
|
fi
|
||||||
if [ $? -ne 0 ]; then
|
if [ $? -ne 0 ]; then
|
||||||
echo "Failed to download SDK."
|
echo "Failed to download SDK."
|
||||||
exit 1
|
exit 1
|
||||||
@ -121,26 +128,30 @@ read -r -p "Do you want TensorFlow for CPU or GPU? (cpu/gpu): " tf_choice
|
|||||||
mkdir -p "$BIN_DIR/tensorflow"
|
mkdir -p "$BIN_DIR/tensorflow"
|
||||||
if [ "$tf_choice" == "gpu" ]; then
|
if [ "$tf_choice" == "gpu" ]; then
|
||||||
echo "Downloading TensorFlow GPU..."
|
echo "Downloading TensorFlow GPU..."
|
||||||
wget https://storage.googleapis.com/tensorflow/libtensorflow/libtensorflow-gpu-linux-x86_64-2.6.0.tar.gz >/dev/null 2>&1
|
wget https://storage.googleapis.com/tensorflow/libtensorflow/libtensorflow-gpu-linux-x86_64-2.6.0.tar.gz >/dev/null 2>&1 # Use 2.6 for newer GPU support
|
||||||
if [ $? -ne 0 ]; then
|
if [ $? -ne 0 ]; then
|
||||||
echo "Failed to download TensorFlow GPU."
|
echo "Failed to download TensorFlow GPU."
|
||||||
exit 1
|
exit 1
|
||||||
fi
|
fi
|
||||||
echo "Extracting TensorFlow GPU..."
|
echo "Extracting TensorFlow GPU..."
|
||||||
tar -xf libtensorflow-gpu-linux-x86_64-2.6.0.tar.gz -C "$BIN_DIR/tensorflow" >/dev/null 2>&1
|
tar -xf libtensorflow-gpu-linux-x86_64-2.6.0.tar.gz -C "$BIN_DIR/tensorflow" >/dev/null 2>&1
|
||||||
|
|
||||||
|
mv "$BIN_DIR/tensorflow/lib/libtensorflow.so.1" "$BIN_DIR/libs/libtensorflow.so.1"
|
||||||
|
mv "$BIN_DIR/tensorflow/lib/libtensorflow_framework.so.2.6.0" "$BIN_DIR/libs/libtensorflow_framework.so.2"
|
||||||
|
|
||||||
else
|
else
|
||||||
echo "Downloading TensorFlow CPU..."
|
echo "Downloading TensorFlow CPU..."
|
||||||
wget https://storage.googleapis.com/tensorflow/libtensorflow/libtensorflow-cpu-linux-x86_64-2.6.0.tar.gz >/dev/null 2>&1
|
#wget https://storage.googleapis.com/tensorflow/libtensorflow/libtensorflow-cpu-linux-x86_64-2.6.0.tar.gz >/dev/null 2>&1
|
||||||
|
wget https://storage.googleapis.com/tensorflow/libtensorflow/libtensorflow-cpu-linux-x86_64-1.14.0.tar.gz >/dev/null 2>&1 # Use 1.14 as it's smaller in size
|
||||||
if [ $? -ne 0 ]; then
|
if [ $? -ne 0 ]; then
|
||||||
echo "Failed to download TensorFlow CPU."
|
echo "Failed to download TensorFlow CPU."
|
||||||
exit 1
|
exit 1
|
||||||
fi
|
fi
|
||||||
echo "Extracting TensorFlow CPU..."
|
echo "Extracting TensorFlow CPU..."
|
||||||
tar -xf libtensorflow-cpu-linux-x86_64-2.6.0.tar.gz -C "$BIN_DIR/tensorflow" >/dev/null 2>&1
|
tar -xf libtensorflow-cpu-linux-x86_64-1.14.0.tar.gz -C "$BIN_DIR/tensorflow" >/dev/null 2>&1
|
||||||
fi
|
|
||||||
|
|
||||||
mv "$BIN_DIR/tensorflow/lib/libtensorflow.so.1" "$BIN_DIR/libs/libtensorflow.so.1"
|
mv "$BIN_DIR/tensorflow/lib/"* "$BIN_DIR/libs/"
|
||||||
mv "$BIN_DIR/tensorflow/lib/libtensorflow_framework.so.2.6.0" "$BIN_DIR/libs/libtensorflow_framework.so.2"
|
fi
|
||||||
|
|
||||||
# Build the wheel
|
# Build the wheel
|
||||||
echo "Building the wheel..."
|
echo "Building the wheel..."
|
||||||
@ -157,6 +168,8 @@ mv "$BIN_DIR/plugins.xml" "$BUILD_DIR/libs"
|
|||||||
|
|
||||||
# Move the assets to the root directory
|
# Move the assets to the root directory
|
||||||
mv "$SDK_DIR/assets" "$BUILD_DIR/assets"
|
mv "$SDK_DIR/assets" "$BUILD_DIR/assets"
|
||||||
|
# Removes unused models (only keeps TensorFlow and OpenVINO basic license plat recognition)
|
||||||
|
rm -Rf "$BUILD_DIR/assets/images" "$BUILD_DIR/assets/models.amlogic_npu" "$BUILD_DIR/assets/models.tensorrt" $BUILD_DIR/assets/models/ultimateALPR-SDK_klass* $BUILD_DIR/assets/models/ultimateALPR-SDK_*mobile* $BUILD_DIR/assets/models/*korean* $BUILD_DIR/assets/models/*chinese* $BUILD_DIR/assets/models/ultimateALPR-SDK_recogn1x100* $BUILD_DIR/assets/models/ultimateALPR-SDK_recogn1x200* $BUILD_DIR/assets/models/ultimateALPR-SDK_recogn1x300* $BUILD_DIR/assets/models/ultimateALPR-SDK_recogn1x400* $BUILD_DIR/assets/models.openvino/ultimateALPR-SDK_klass*
|
||||||
|
|
||||||
# Deactivate and clean up the build virtual environment
|
# Deactivate and clean up the build virtual environment
|
||||||
echo "Deactivating and cleaning up virtual environment..."
|
echo "Deactivating and cleaning up virtual environment..."
|
||||||
|
@ -1,3 +1,3 @@
|
|||||||
flask
|
flask
|
||||||
pillow
|
Pillow
|
||||||
ultimateAlprSdk
|
ultimateAlprSdk
|
@ -1,11 +1,11 @@
|
|||||||
<!DOCTYPE html>
|
<!DOCTYPE html>
|
||||||
<html lang="en">
|
<html lang="en">
|
||||||
|
|
||||||
<head>
|
<head>
|
||||||
<meta charset="UTF-8">
|
<meta charset="UTF-8">
|
||||||
<meta name="viewport" content="width=device-width, initial-scale=1.0">
|
<meta content="width=device-width, initial-scale=1.0" name="viewport">
|
||||||
<title>Easy Local ALPR - API</title>
|
<title>Easy Local ALPR - API</title>
|
||||||
<script src="https://cdn.tailwindcss.com"></script>
|
<script src="https://cdn.tailwindcss.com"></script>
|
||||||
<!-- Include Google Sans font -->
|
|
||||||
<link href="https://fonts.googleapis.com/css2?family=Google+Sans:wght@400;500;700&display=swap" rel="stylesheet">
|
<link href="https://fonts.googleapis.com/css2?family=Google+Sans:wght@400;500;700&display=swap" rel="stylesheet">
|
||||||
<style>
|
<style>
|
||||||
body {
|
body {
|
||||||
@ -14,144 +14,343 @@
|
|||||||
background-size: 20px 20px;
|
background-size: 20px 20px;
|
||||||
font-family: 'Google Sans', sans-serif;
|
font-family: 'Google Sans', sans-serif;
|
||||||
}
|
}
|
||||||
.loading-circle {
|
|
||||||
border: 4px solid rgba(0, 0, 0, 0.1);
|
.grid-cell {
|
||||||
border-left-color: #000;
|
border: 2px solid #e5e7eb; /* Tailwind gray-200 */
|
||||||
border-radius: 50%;
|
display: flex;
|
||||||
width: 24px;
|
align-items: center;
|
||||||
height: 24px;
|
justify-content: center;
|
||||||
animation: spin 1s linear infinite;
|
cursor: pointer;
|
||||||
|
border-radius: 0.5rem; /* Rounded corners */
|
||||||
|
transition: background-color 0.2s ease, color 0.2s ease, border-color 0.2s ease; /* Smooth transition */
|
||||||
|
padding-top: 25%; /* More compact rectangular shape */
|
||||||
|
position: relative;
|
||||||
|
overflow: hidden;
|
||||||
|
box-shadow: 0 1px 2px rgba(0, 0, 0, 0.05); /* Subtle shadow for modern look */
|
||||||
}
|
}
|
||||||
@keyframes spin {
|
|
||||||
to { transform: rotate(360deg); }
|
.grid-cell span {
|
||||||
|
position: absolute;
|
||||||
|
top: 50%;
|
||||||
|
left: 50%;
|
||||||
|
transform: translate(-50%, -50%);
|
||||||
|
font-weight: 500; /* Semi-bold text */
|
||||||
}
|
}
|
||||||
input[type="text"], input[type="number"] {
|
|
||||||
background-color: white;
|
.grid-cell.selected {
|
||||||
color: black;
|
background-color: #1f2937; /* Tailwind gray-800 */
|
||||||
}
|
|
||||||
input[type="text"].dark, input[type="number"].dark {
|
|
||||||
background-color: #3b3b3b;
|
|
||||||
color: white;
|
color: white;
|
||||||
|
border-color: #1f2937; /* Match border color with background */
|
||||||
|
}
|
||||||
|
|
||||||
|
.grid-cell:hover {
|
||||||
|
background-color: #9ca3af; /* Tailwind gray-400 for hover effect */
|
||||||
|
color: white;
|
||||||
|
border-color: #9ca3af; /* Match border color with hover effect */
|
||||||
|
}
|
||||||
|
|
||||||
|
.grid-container {
|
||||||
|
display: grid;
|
||||||
|
grid-template-columns: repeat(auto-fill, minmax(50px, 1fr));
|
||||||
|
gap: 8px; /* Adjust gap between cells */
|
||||||
|
margin-top: 1rem;
|
||||||
}
|
}
|
||||||
</style>
|
</style>
|
||||||
</head>
|
</head>
|
||||||
<body class="bg-neutral-100 dark:bg-neutral-900 dark:text-white flex items-center justify-center min-h-screen p-4">
|
|
||||||
<!-- Logo -->
|
|
||||||
<div class="absolute top-4 left-4 z-50">
|
|
||||||
<img id="logo" src="{{ url_for('static', filename='logo_black.webp') }}" alt="Logo" class="h-12 dark:hidden">
|
|
||||||
<img id="logoDark" src="{{ url_for('static', filename='logo_white.webp') }}" alt="Logo" class="h-12 hidden dark:block">
|
|
||||||
</div>
|
|
||||||
|
|
||||||
<div class="bg-white dark:bg-neutral-800 p-6 rounded-lg shadow-lg w-full max-w-md mt-16">
|
<body class="bg-neutral-100 dark:bg-neutral-900 dark:text-white flex items-center justify-center min-h-screen p-4">
|
||||||
<h1 class="text-2xl font-bold mb-4 text-center dark:text-gray-200">Upload Image for ALPR</h1>
|
<div class="absolute top-4 left-4 z-50">
|
||||||
<form id="uploadForm" enctype="multipart/form-data" class="space-y-4">
|
<img alt="Logo" class="h-12 dark:hidden" id="logo" src="{{ url_for('static', filename='logo_black.webp') }}">
|
||||||
|
<img alt="Logo" class="h-12 hidden dark:block" id="logoDark"
|
||||||
|
src="{{ url_for('static', filename='logo_white.webp') }}">
|
||||||
|
</div>
|
||||||
|
|
||||||
|
<div class="bg-white dark:bg-neutral-800 p-6 rounded-lg shadow-lg w-full max-w-xl mt-16">
|
||||||
|
<h1 class="text-2xl font-bold mb-4 text-center dark:text-gray-200">Select Service</h1>
|
||||||
|
<form class="space-y-4" id="serviceForm">
|
||||||
|
<div>
|
||||||
|
<label class="block text-sm font-medium text-gray-700 dark:text-gray-300" for="service">Choose a
|
||||||
|
service:</label>
|
||||||
|
<select class="mt-1 block w-full py-2 px-3 border border-gray-300 bg-white dark:bg-neutral-800 dark:border-neutral-700 rounded-md shadow-sm focus:outline-none focus:ring-indigo-500 focus:border-indigo-500 sm:text-sm"
|
||||||
|
id="service" name="service" onchange="updateFormFields()">
|
||||||
|
<option value="alpr">Plate Recognition (ALPR)</option>
|
||||||
|
<option value="alpr_grid_debug">Grid Size Helper</option>
|
||||||
|
</select>
|
||||||
|
</div>
|
||||||
|
|
||||||
|
<div class="service-fields hidden" id="alprFields">
|
||||||
<div>
|
<div>
|
||||||
<label for="upload" class="block text-sm font-medium text-gray-700 dark:text-gray-300">Choose an image:</label>
|
<label for="upload_alpr" class="block text-sm font-medium text-gray-700 dark:text-gray-300">Choose an
|
||||||
|
image:</label>
|
||||||
<div class="mt-1 flex items-center">
|
<div class="mt-1 flex items-center">
|
||||||
<input type="file" id="upload" name="upload" accept="image/*" class="hidden" onchange="updateFileName()">
|
<input type="file" id="upload_alpr" name="upload" accept="image/*" class="hidden"
|
||||||
<label for="upload" class="cursor-pointer inline-flex items-center justify-center px-4 py-2 border border-gray-400 rounded-md shadow-sm text-sm font-medium text-gray-700 dark:text-gray-300 bg-white dark:bg-neutral-800 hover:bg-neutral-50 dark:hover:bg-neutral-600">
|
onchange="updateFileName();">
|
||||||
Select file
|
<label for="upload_alpr"
|
||||||
</label>
|
class="cursor-pointer inline-flex items-center justify-center px-4 py-2 border border-gray-400 rounded-md shadow-sm text-sm font-medium text-gray-700 dark:text-gray-300 bg-white dark:bg-neutral-800 hover:bg-neutral-50 dark:hover:bg-neutral-600">Select
|
||||||
<span id="fileName" class="ml-2 text-sm text-gray-600 dark:text-gray-300"></span>
|
file</label>
|
||||||
|
<span id="fileName_alpr" class="ml-2 text-sm text-gray-600 dark:text-gray-300"></span>
|
||||||
|
</div>
|
||||||
|
</div>
|
||||||
|
<div class="mt-4">
|
||||||
|
<label for="grid_size_alpr" class="block text-sm font-medium text-gray-700 dark:text-gray-300">Grid
|
||||||
|
Size:</label>
|
||||||
|
<input type="number" id="grid_size_alpr" name="grid_size" value="3"
|
||||||
|
class="mt-1 block w-full px-3 py-2 border border-gray-300 rounded-md shadow-sm focus:outline-none focus:ring-indigo-500 focus:border-indigo-500 sm:text-sm dark:bg-neutral-800 dark:border-neutral-700">
|
||||||
|
</div>
|
||||||
|
<div class="mt-4">
|
||||||
|
<label for="wanted_cells_alpr" class="block text-sm font-medium text-gray-700 dark:text-gray-300">Wanted
|
||||||
|
Cells:</label>
|
||||||
|
<div id="gridContainer_alpr" class="grid-container"></div>
|
||||||
|
<input type="hidden" id="wanted_cells_alpr" name="wanted_cells">
|
||||||
|
</div>
|
||||||
|
<div class="mt-4 flex flex-row space-between">
|
||||||
|
<div>
|
||||||
|
<label for="whole_image_fallback_alpr" class="block text-sm font-medium text-gray-700 dark:text-gray-300">Fallback to whole image if no plate is found in specified cells?</label>
|
||||||
|
<span class="text-sm text-gray-500 dark:text-gray-400">Only applies if grid size >=2</span>
|
||||||
|
</div>
|
||||||
|
|
||||||
|
<div id="gridContainer_alpr" class="grid-container"></div>
|
||||||
|
<input type="checkbox" id="whole_image_fallback_alpr" checked>
|
||||||
|
</div>
|
||||||
|
|
||||||
|
<input id="plate_image_alpr" name="plate_image_alpr" type="hidden" value="true">
|
||||||
|
</div>
|
||||||
|
|
||||||
|
<div class="service-fields hidden" id="alpr_grid_debugFields">
|
||||||
|
<div>
|
||||||
|
<label for="upload_alpr_grid_debug" class="block text-sm font-medium text-gray-700 dark:text-gray-300">Choose
|
||||||
|
an image:</label>
|
||||||
|
<div class="mt-1 flex items-center">
|
||||||
|
<input type="file" id="upload_alpr_grid_debug" name="upload" accept="image/*" class="hidden"
|
||||||
|
onchange="updateFileName();">
|
||||||
|
<label for="upload_alpr_grid_debug"
|
||||||
|
class="cursor-pointer inline-flex items-center justify-center px-4 py-2 border border-gray-400 rounded-md shadow-sm text-sm font-medium text-gray-700 dark:text-gray-300 bg-white dark:bg-neutral-800 hover:bg-neutral-50 dark:hover:bg-neutral-600">Select
|
||||||
|
file</label>
|
||||||
|
<span id="fileName_alpr_grid_debug" class="ml-2 text-sm text-gray-600 dark:text-gray-300"></span>
|
||||||
</div>
|
</div>
|
||||||
</div>
|
</div>
|
||||||
<div>
|
<div>
|
||||||
<label for="grid_size" class="block text-sm font-medium text-gray-700 dark:text-gray-300">Grid Size:</label>
|
<label for="grid_size_alpr_grid_debug"
|
||||||
<input type="number" id="grid_size" name="grid_size" value="3" class="mt-1 block w-full px-3 py-2 border border-gray-300 rounded-md shadow-sm focus:outline-none focus:ring-indigo-500 focus:border-indigo-500 sm:text-sm dark">
|
class="block text-sm font-medium text-gray-700 dark:text-gray-300">Grid Size:</label>
|
||||||
|
<input type="number" id="grid_size_alpr_grid_debug" name="grid_size" value="1"
|
||||||
|
class="mt-1 block w-full px-3 py-2 border border-gray-300 rounded-md shadow-sm focus:outline-none focus:ring-indigo-500 focus:border-indigo-500 sm:text-sm dark:bg-neutral-800 dark:border-neutral-700">
|
||||||
</div>
|
</div>
|
||||||
<div>
|
<div>
|
||||||
<label for="wanted_cells" class="block text-sm font-medium text-gray-700 dark:text-gray-300">Wanted Cells:</label>
|
<label for="wanted_cells_alpr_grid_debug"
|
||||||
<input type="text" id="wanted_cells" name="wanted_cells" class="mt-1 block w-full px-3 py-2 border border-gray-300 rounded-md shadow-sm focus:outline-none focus:ring-indigo-500 focus:border-indigo-500 sm:text-sm dark">
|
class="block text-sm font-medium text-gray-700 dark:text-gray-300">Wanted Cells:</label>
|
||||||
|
<div id="gridContainer_alpr_grid_debug" class="grid-container"></div>
|
||||||
|
<input type="hidden" id="wanted_cells_alpr_grid_debug" name="wanted_cells">
|
||||||
</div>
|
</div>
|
||||||
<div id="imagePreview" class="mt-4 hidden">
|
|
||||||
<img id="previewImage" src="#" alt="Preview" class="max-w-full h-auto rounded-lg">
|
|
||||||
</div>
|
|
||||||
<button id="submitButton" type="submit" class="w-full py-2 px-4 bg-black text-white font-semibold rounded-md shadow-sm hover:bg-neutral-900 dark:bg-neutral-900 dark:hover:bg-neutral-950 relative flex justify-center items-center">
|
|
||||||
<span>Upload</span>
|
|
||||||
<div id="loadingCircle" class="loading-circle absolute hidden"></div>
|
|
||||||
</button>
|
|
||||||
</form>
|
|
||||||
<div class="mt-6">
|
|
||||||
<h2 class="text-xl font-semibold mb-2 dark:text-gray-200">Response</h2>
|
|
||||||
<pre id="responseBox" class="bg-neutral-100 dark:bg-neutral-900 p-4 border rounded-lg text-sm text-gray-900 dark:text-gray-200 overflow-x-auto"></pre>
|
|
||||||
</div>
|
</div>
|
||||||
|
|
||||||
|
<div id="imagePreview" class="mt-4 hidden">
|
||||||
|
<label id="imagePreviewLabel"
|
||||||
|
class="block text-sm font-medium text-gray-700 dark:text-gray-300 mb-2">Identified plate images:</label>
|
||||||
|
<div id="previewImageContainer" class="grid grid-cols-1 sm:grid-cols-2 gap-4"></div>
|
||||||
|
<img id="previewImageDebug" src="#" alt="" class="max-w-full h-auto rounded-lg">
|
||||||
|
</div>
|
||||||
|
|
||||||
|
|
||||||
|
<button class="w-full py-2 px-4 bg-black text-white font-semibold rounded-md shadow-sm hover:bg-neutral-900 dark:bg-neutral-900 dark:hover:bg-neutral-950"
|
||||||
|
id="submitButton" type="submit">Submit
|
||||||
|
</button>
|
||||||
|
</form>
|
||||||
|
|
||||||
|
<div class="mt-6">
|
||||||
|
<h2 class="text-xl font-semibold mb-2 dark:text-gray-200">
|
||||||
|
Response
|
||||||
|
<span class="text-sm font-normal" id="timer"></span>
|
||||||
|
</h2>
|
||||||
|
<pre class="bg-neutral-100 dark:bg-neutral-900 p-4 border rounded-lg text-sm text-gray-900 dark:text-gray-200 overflow-x-auto"
|
||||||
|
id="responseBox"></pre>
|
||||||
</div>
|
</div>
|
||||||
|
</div>
|
||||||
|
|
||||||
<script src="https://code.jquery.com/jquery-3.5.1.min.js"></script>
|
<script src="https://code.jquery.com/jquery-3.5.1.min.js"></script>
|
||||||
<script>
|
<script>
|
||||||
function updateFileName() {
|
function updateFormFields() {
|
||||||
var input = document.getElementById('upload');
|
const service = document.getElementById('service').value;
|
||||||
var fileName = document.getElementById('fileName');
|
localStorage.setItem('selectedService', service);
|
||||||
var imagePreview = document.getElementById('imagePreview');
|
|
||||||
var previewImage = document.getElementById('previewImage');
|
|
||||||
|
|
||||||
fileName.textContent = input.files[0] ? input.files[0].name : '';
|
document.querySelectorAll('.service-fields').forEach(field => {
|
||||||
|
field.classList.add('hidden');
|
||||||
|
field.querySelectorAll('input, select').forEach(field => field.disabled = true);
|
||||||
|
});
|
||||||
|
|
||||||
if (input.files && input.files[0]) {
|
const selectedServiceFields = document.getElementById(service + 'Fields');
|
||||||
var reader = new FileReader();
|
selectedServiceFields.classList.remove('hidden');
|
||||||
|
selectedServiceFields.querySelectorAll('input, select').forEach(field => field.disabled = false);
|
||||||
|
|
||||||
reader.onload = function (e) {
|
['responseBox', 'timer', 'fileName_' + service, 'previewImage', 'imagePreview', 'upload_' + service]
|
||||||
previewImage.src = e.target.result;
|
.forEach(id => {
|
||||||
imagePreview.classList.remove('hidden');
|
const element = document.getElementById(id);
|
||||||
|
if (element) {
|
||||||
|
if (element.tagName === 'DIV') element.classList.add('hidden');
|
||||||
|
if (element.tagName === 'INPUT') element.value = '';
|
||||||
|
if (element.tagName === 'SPAN' || element.tagName === 'PRE') element.textContent = '';
|
||||||
|
if (element.tagName === 'IMG') element.src = '';
|
||||||
}
|
}
|
||||||
|
});
|
||||||
|
|
||||||
reader.readAsDataURL(input.files[0]);
|
updateGrid(service);
|
||||||
}
|
}
|
||||||
|
|
||||||
|
function initializeForm() {
|
||||||
|
const savedService = localStorage.getItem('selectedService');
|
||||||
|
if (savedService) {
|
||||||
|
document.getElementById('service').value = savedService;
|
||||||
|
updateFormFields();
|
||||||
}
|
}
|
||||||
|
}
|
||||||
|
|
||||||
const prefersDarkScheme = window.matchMedia("(prefers-color-scheme: dark)");
|
function toggleLogo() {
|
||||||
function toggleLogo() {
|
const logo = document.getElementById('logo');
|
||||||
const logo = document.getElementById('logo');
|
const logoDark = document.getElementById('logoDark');
|
||||||
const logoDark = document.getElementById('logoDark');
|
if (window.matchMedia("(prefers-color-scheme: dark)").matches) {
|
||||||
const upload = document.getElementById('upload');
|
logo.style.display = 'none';
|
||||||
const gridSize = document.getElementById('grid_size');
|
logoDark.style.display = 'block';
|
||||||
const wantedCells = document.getElementById('wanted_cells');
|
} else {
|
||||||
|
logo.style.display = 'block';
|
||||||
if (prefersDarkScheme.matches) {
|
logoDark.style.display = 'none';
|
||||||
logo.style.display = 'none';
|
|
||||||
logoDark.style.display = 'block';
|
|
||||||
upload.classList.add('dark');
|
|
||||||
gridSize.classList.add('dark');
|
|
||||||
wantedCells.classList.add('dark');
|
|
||||||
} else {
|
|
||||||
logo.style.display = 'block';
|
|
||||||
logoDark.style.display = 'none';
|
|
||||||
upload.classList.remove('dark');
|
|
||||||
gridSize.classList.remove('dark');
|
|
||||||
wantedCells.classList.remove('dark');
|
|
||||||
}
|
|
||||||
}
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
function updateFileName() {
|
||||||
|
const service = document.getElementById('service').value;
|
||||||
|
const input = document.getElementById('upload_' + service);
|
||||||
|
const fileName = document.getElementById('fileName_' + service);
|
||||||
|
const imagePreview = document.getElementById('imagePreview');
|
||||||
|
const previewImage = document.getElementById('previewImage');
|
||||||
|
const imagePreviewLabel = document.getElementById('imagePreviewLabel');
|
||||||
|
|
||||||
|
fileName.textContent = input.files[0] ? input.files[0].name : '';
|
||||||
|
imagePreviewLabel.textContent = 'Preview:';
|
||||||
|
|
||||||
|
if (input.files && input.files[0]) {
|
||||||
|
const reader = new FileReader();
|
||||||
|
reader.onload = (e) => {
|
||||||
|
previewImage.src = e.target.result;
|
||||||
|
imagePreview.classList.remove('hidden');
|
||||||
|
}
|
||||||
|
reader.readAsDataURL(input.files[0]);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
function updateGrid(service) {
|
||||||
|
const gridSize = parseInt(document.getElementById('grid_size_' + service).value);
|
||||||
|
const gridContainer = document.getElementById('gridContainer_' + service);
|
||||||
|
gridContainer.innerHTML = '';
|
||||||
|
gridContainer.style.gridTemplateColumns = `repeat(${gridSize}, minmax(0, 1fr))`;
|
||||||
|
const wantedCellsInput = document.getElementById('wanted_cells_' + service);
|
||||||
|
const selectedCells = wantedCellsInput.value ? wantedCellsInput.value.split(',').map(Number) : [];
|
||||||
|
|
||||||
|
for (let i = 0; i < gridSize * gridSize; i++) {
|
||||||
|
const cell = document.createElement('div');
|
||||||
|
cell.classList.add('grid-cell');
|
||||||
|
|
||||||
|
const cellSpan = document.createElement('span');
|
||||||
|
cellSpan.textContent = i + 1;
|
||||||
|
cell.appendChild(cellSpan);
|
||||||
|
|
||||||
|
if (selectedCells.includes(i + 1)) cell.classList.add('selected');
|
||||||
|
cell.addEventListener('click', () => {
|
||||||
|
cell.classList.toggle('selected');
|
||||||
|
updateWantedCells(service);
|
||||||
|
});
|
||||||
|
gridContainer.appendChild(cell);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
function updateWantedCells(service) {
|
||||||
|
const gridContainer = document.getElementById('gridContainer_' + service);
|
||||||
|
const selectedCells = [];
|
||||||
|
gridContainer.querySelectorAll('.grid-cell.selected').forEach(cell => {
|
||||||
|
selectedCells.push(cell.textContent);
|
||||||
|
});
|
||||||
|
document.getElementById('wanted_cells_' + service).value = selectedCells.join(',');
|
||||||
|
}
|
||||||
|
|
||||||
|
$(document).ready(function () {
|
||||||
|
initializeForm();
|
||||||
toggleLogo();
|
toggleLogo();
|
||||||
prefersDarkScheme.addEventListener('change', toggleLogo);
|
window.matchMedia("(prefers-color-scheme: dark)").addEventListener('change', toggleLogo);
|
||||||
|
|
||||||
$(document).ready(function () {
|
$('#grid_size_alpr, #grid_size_alpr_grid_debug').on('input', function () {
|
||||||
$('#uploadForm').on('submit', function (e) {
|
updateGrid(document.getElementById('service').value);
|
||||||
e.preventDefault();
|
});
|
||||||
var formData = new FormData(this);
|
|
||||||
$('#submitButton').prop('disabled', true);
|
|
||||||
$('#loadingCircle').removeClass('hidden');
|
|
||||||
|
|
||||||
$.ajax({
|
$('#serviceForm').on('submit', function (e) {
|
||||||
url: '/v1/image/alpr',
|
e.preventDefault();
|
||||||
type: 'POST',
|
const service = $('#service').val();
|
||||||
data: formData,
|
const formData = new FormData(this);
|
||||||
processData: false,
|
formData.append('whole_image_fallback', $("#whole_image_fallback_alpr").is(":checked") ? "true" : "false");
|
||||||
contentType: false,
|
var url;
|
||||||
success: function (data) {
|
if (service === 'alpr') {
|
||||||
$('#responseBox').text(JSON.stringify(data, null, 2));
|
url = '/v1/image/alpr';
|
||||||
},
|
type = 'POST';
|
||||||
error: function (xhr, status, error) {
|
} else if (service === 'alpr_grid_debug') {
|
||||||
var err = JSON.parse(xhr.responseText);
|
url = '/v1/image/alpr_grid_debug';
|
||||||
$('#responseBox').text(JSON.stringify(err, null, 2));
|
type = 'POST';
|
||||||
},
|
}
|
||||||
complete: function () {
|
$('#submitButton').prop('disabled', true).html('<svg class="animate-spin h-5 w-5 text-white mx-auto" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24" fill="none"><circle class="opacity-25" cx="12" cy="12" r="10" stroke="currentColor" stroke-width="4"></circle><path class="opacity-75" fill="currentColor" d="M12 2a10 10 0 00-8 4.9l1.5 1A8 8 0 0112 4V2z"></path></svg>');
|
||||||
$('#submitButton').prop('disabled', false);
|
|
||||||
$('#loadingCircle').addClass('hidden');
|
const startTime = Date.now();
|
||||||
|
|
||||||
|
$.ajax({
|
||||||
|
url: url,
|
||||||
|
type: type,
|
||||||
|
data: formData,
|
||||||
|
processData: false,
|
||||||
|
contentType: false,
|
||||||
|
success: function (data) {
|
||||||
|
const endTime = Date.now();
|
||||||
|
const elapsedTime = endTime - startTime;
|
||||||
|
$('#responseBox').text(JSON.stringify(data, null, 2));
|
||||||
|
$('#timer').text(`(${elapsedTime} ms)`);
|
||||||
|
$('#submitButton').prop('disabled', false).text('Submit');
|
||||||
|
|
||||||
|
$('#previewImageDebug').attr('src', '');
|
||||||
|
$('#previewImageContainer').empty();
|
||||||
|
|
||||||
|
if (data.image) {
|
||||||
|
$('#previewImageDebug').attr('src', data.image);
|
||||||
|
$('#imagePreview').removeClass('hidden');
|
||||||
}
|
}
|
||||||
});
|
|
||||||
|
if (Array.isArray(data.predictions) && data.predictions.length > 0) {
|
||||||
|
data.predictions.forEach((prediction, index) => {
|
||||||
|
if (prediction.image) {
|
||||||
|
const img = $('<img>')
|
||||||
|
.attr('src', prediction.image)
|
||||||
|
.addClass('max-w-full h-auto rounded-lg border border-gray-300 dark:border-gray-700 shadow');
|
||||||
|
|
||||||
|
const wrapper = $('<div>').append(
|
||||||
|
$('<p>').addClass('text-sm mb-1 text-gray-600 dark:text-gray-300').text(`Plate ${index + 1}`),
|
||||||
|
img
|
||||||
|
);
|
||||||
|
|
||||||
|
$('#previewImageContainer').append(wrapper);
|
||||||
|
}
|
||||||
|
});
|
||||||
|
|
||||||
|
$('#imagePreview').removeClass('hidden');
|
||||||
|
$('#imagePreviewLabel').text('Identified plate images:');
|
||||||
|
} else {
|
||||||
|
updateFileName(); // fallback if no images found
|
||||||
|
}
|
||||||
|
},
|
||||||
|
error: function (xhr) {
|
||||||
|
const endTime = Date.now();
|
||||||
|
const elapsedTime = endTime - startTime;
|
||||||
|
const err = JSON.parse(xhr.responseText);
|
||||||
|
$('#responseBox').text(JSON.stringify(err, null, 2));
|
||||||
|
$('#timer').text(`(${elapsedTime} ms)`);
|
||||||
|
$('#submitButton').prop('disabled', false).text('Submit');
|
||||||
|
}
|
||||||
});
|
});
|
||||||
});
|
});
|
||||||
</script>
|
});
|
||||||
|
</script>
|
||||||
</body>
|
</body>
|
||||||
|
|
||||||
</html>
|
</html>
|
||||||
|
Binary file not shown.
BIN
wheel/ultimateAlprSdk-3.14.1-cp310-cp310-linux_x86_64.whl
Normal file
BIN
wheel/ultimateAlprSdk-3.14.1-cp310-cp310-linux_x86_64.whl
Normal file
Binary file not shown.
Loading…
x
Reference in New Issue
Block a user