This repository has been archived on 2023-06-09. You can view files and clone it, but cannot push or open issues or pull requests.
jarvis-server/jarvis/ia/nltk_utils.py

53 lines
1.5 KiB
Python

import nltk
import numpy as np
from nltk.stem.porter import PorterStemmer
from jarvis.utils import languages_utils
stemmer = PorterStemmer()
# TODO : have a look to replace nltk by spacy or the other way (use only one of them)
def tokenize(sentence):
"""
split sentence into array of words/tokens
a token can be a word or punctuation character, or number
"""
# English, Danish, Estonian, French, Greek, Norwegian, Portuguese, Spanish, Turkish,
# Czech, Dutch, Finnish, German, Italian, Polish, Slovene, and Swedish
return nltk.word_tokenize(sentence,
language=languages_utils.get_language_full_name())
def stem(word):
"""
stemming = find the root form of the word
examples:
words = ["organize", "organizes", "organizing"]
words = [stem(w) for w in words]
-> ["organ", "organ", "organ"]
"""
return stemmer.stem(word.lower())
def bag_of_words(tokenized_sentence, words):
"""
return bag of words array:
1 for each known word that exists in the sentence, 0 otherwise
example:
sentence = ["hello", "how", "are", "you"]
words = ["hi", "hello", "I", "you", "bye", "thank", "cool"]
bog = [ 0 , 1 , 0 , 1 , 0 , 0 , 0]
"""
# stem each word
sentence_words = [stem(word) for word in tokenized_sentence]
# initialize bag with 0 for each word
bag = np.zeros(len(words), dtype='float32')
for idx, w in enumerate(words):
if w in sentence_words:
bag[idx] = 1
return bag