138 lines
5.1 KiB
Python
138 lines
5.1 KiB
Python
import json
|
|
|
|
from adapt.engine import DomainIntentDeterminationEngine
|
|
from padatious import IntentContainer
|
|
|
|
from jarvis.utils import utils
|
|
|
|
adapt_engine = DomainIntentDeterminationEngine()
|
|
padatious_intents_container = IntentContainer('intent_cache')
|
|
|
|
intents_handlers_adapt = dict()
|
|
intents_handlers_padatious = dict()
|
|
|
|
|
|
def register_entity_adapt(entity_value, entity_type, domain):
|
|
adapt_engine.register_entity(entity_value=entity_value, entity_type=entity_type, domain=domain)
|
|
# print("[Adapt]: Added entity with type " + entity_type + " for " + domain)
|
|
|
|
|
|
def register_entity_padatious(entity_name, list):
|
|
padatious_intents_container.add_entity(entity_name, list)
|
|
# print("[Padatious]: Added entity with name " + entity_name + " with " str(len(list)) + "examples.")
|
|
|
|
|
|
def register_regex_adapt(regex, domain):
|
|
adapt_engine.register_regex_entity(regex, domain)
|
|
# print("[Adapt]: Added new regex for " + domain)
|
|
|
|
|
|
def register_intent_adapt(intent, domain):
|
|
adapt_engine.register_intent_parser(intent, domain=domain)
|
|
print("[Adapt]: Registered new intent " + intent.name + " for skill " + domain + ".")
|
|
|
|
|
|
def register_intent_padatious(intent_name, list_of_intent_examples):
|
|
padatious_intents_container.add_intent(intent_name, list_of_intent_examples)
|
|
print("[Padatious]: Registered new intent " + intent_name + " with " + str(
|
|
len(list_of_intent_examples)) + " examples.")
|
|
|
|
|
|
def train_padatious():
|
|
padatious_intents_container.train()
|
|
|
|
|
|
def load_all_skills():
|
|
for handler in intents_handlers_adapt:
|
|
function_handler = intents_handlers_adapt.get(handler)
|
|
intent_builder = getattr(function_handler[0], "_data", [])[0]
|
|
skill_name = function_handler[1]
|
|
register_intent_adapt(intent_builder.build(), domain=skill_name)
|
|
|
|
for handler in intents_handlers_padatious:
|
|
function_handler = intents_handlers_padatious.get(handler)
|
|
intent_data_examples = function_handler[1]
|
|
register_intent_padatious(handler, intent_data_examples)
|
|
|
|
|
|
def handle(intent_name, data):
|
|
module_path_str = None
|
|
handler_method_name = None
|
|
|
|
if intent_name in intents_handlers_adapt:
|
|
# something like handler_play_song_spotify (used to call the handler method from the skill imported below)
|
|
handler_method_name = intents_handlers_adapt.get(intent_name)[2]
|
|
|
|
# something like jarvis.skill.entertainment.spotify (used to import the create_skill method to create a new object)
|
|
module_path_str = intents_handlers_adapt.get(intent_name)[3]
|
|
if intent_name in intents_handlers_padatious:
|
|
# something like handler_play_song_spotify (used to call the handler method from the skill imported below)
|
|
handler_method_name = intents_handlers_padatious.get(intent_name)[0]
|
|
|
|
# something like jarvis.skill.entertainment.spotify (used to import the create_skill method to create a new object)
|
|
module_path_str = intents_handlers_padatious.get(intent_name)[2]
|
|
|
|
if module_path_str is not None and handler_method_name is not None:
|
|
# import the create_skill method from the skill using the skill module path
|
|
create_skill_method = utils.import_method_from_string(module_path_str, "create_skill")
|
|
|
|
skill_init_data = {'client_ip': data['client_ip'], 'client_port': data['client_port']}
|
|
|
|
# create a new object of the right skill for the utterance
|
|
skill = create_skill_method(skill_init_data)
|
|
|
|
# import and call the handler method from the skill
|
|
getattr(skill, handler_method_name)(data=data)
|
|
|
|
|
|
def recognise(sentence, client_ip=None, client_port=None):
|
|
sentence = sentence.lower()
|
|
print(sentence)
|
|
|
|
data = dict()
|
|
data['client_ip'] = client_ip
|
|
data['client_port'] = client_port
|
|
|
|
if len(intents_handlers_adapt) > 0:
|
|
try:
|
|
best_intents = adapt_engine.determine_intent(sentence, 100)
|
|
best_intent = next(best_intents)
|
|
|
|
# print(best_intent) # DEBUG
|
|
|
|
data['utterance'] = sentence
|
|
for key, val in best_intent.items():
|
|
if key != 'intent_type' and key != 'target' and key != 'confidence':
|
|
data[key] = val
|
|
handle(best_intent['intent_type'], data=data)
|
|
|
|
return best_intent
|
|
|
|
except StopIteration as e:
|
|
pass
|
|
# print("No match... (Adapt)")
|
|
|
|
if len(intents_handlers_padatious) > 0:
|
|
result = padatious_intents_container.calc_intent(sentence)
|
|
# print(result) # DEBUG
|
|
# print(padatious_intents_container.calc_intents(sentence)) # DEBUG
|
|
|
|
if result.conf >= 0.2:
|
|
data = dict()
|
|
if isinstance(result.sent, list):
|
|
data['utterance'] = " ".join(
|
|
result.sent) # add the sentence (utterance) to the data given to the intent handler
|
|
else:
|
|
data['utterance'] = result.sent
|
|
|
|
data.update(result.matches) # adding the matches from padatious to the data
|
|
handle(result.name, data)
|
|
|
|
return json.dumps(str(result))
|
|
|
|
else:
|
|
pass
|
|
# print("No match... (Padatious)")
|
|
|
|
return "I didn't understrand..."
|