import os import torch from unidecode import unidecode import get_path_file from ia.model import NeuralNet from ia.nltk_utils import bag_of_words, tokenize print("Loading, might take a few seconds...") path = os.path.dirname(get_path_file.__file__) device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') file = path + "/ia/trained_model.pth" data = torch.load(file, map_location=device) input_size = data["input_size"] hidden_size = data["hidden_size"] output_size = data["output_size"] all_words = data['all_words'] tags = data['tags'] model_state = data["model_state"] model = NeuralNet(input_size, hidden_size, output_size).to(device) model.load_state_dict(model_state) model.eval() def get_tag_for_sentence(input_sentence): """ Return the matching tag of the input_sentence given in parameter. It usually is what the STT engine recognise or what the user's type when using no-voice mode Parameters ---------- input_sentence is your sentence Returns tag from the skills.json file ------- """ sentence = unidecode(input_sentence) # convert accent to better recognition sentence = tokenize(sentence) X = bag_of_words(sentence, all_words) X = X.reshape(1, X.shape[0]) X = torch.from_numpy(X).to(device) output = model(X) _, predicted = torch.max(output, dim=1) tag = tags[predicted.item()] probs = torch.softmax(output, dim=1) prob = probs[0][predicted.item()] if prob.item() > 0.75 and len(sentence) > 2: return tag else: return 'dont_understand'