Fully working training and sentence recognition from the model, added stuff to README and requirements
This commit is contained in:
parent
a6ad82e284
commit
06b8be8026
17
README.md
17
README.md
@ -22,10 +22,19 @@ The server can run on anything that runs Python 3+ *(linux recommended)*
|
|||||||
If not already installed, you will need Python 3.9, you can install it with these commands.
|
If not already installed, you will need Python 3.9, you can install it with these commands.
|
||||||
|
|
||||||
```shell
|
```shell
|
||||||
sudo add-apt-repository ppa:deadsnakes/ppa
|
$ sudo add-apt-repository ppa:deadsnakes/ppa
|
||||||
sudo apt-get update
|
$ sudo apt-get update
|
||||||
sudo apt install python3.9 python3.9-dev python3.9-distutils
|
$ sudo apt install python3.9 python3.9-dev python3.9-distutils
|
||||||
```
|
```
|
||||||
|
|
||||||
After that, run the command `python -m pip3 install -r requirements.txt` to install the basic requirements for the
|
After that, run the command `python -m pip3 install -r requirements.txt` to install the basic requirements for the
|
||||||
project.
|
project.
|
||||||
|
|
||||||
|
Then we need to train our model, but before that we need to download "punkt" and "stopwords" from the NLTK downloader,
|
||||||
|
go to the Python Console and enter the following commands :
|
||||||
|
|
||||||
|
```shell
|
||||||
|
> import nltk
|
||||||
|
> nltk.download('punkt')
|
||||||
|
> nltk.download('stopwords')
|
||||||
|
```
|
0
ia/__init__.py
Normal file
0
ia/__init__.py
Normal file
19
ia/model.py
Normal file
19
ia/model.py
Normal file
@ -0,0 +1,19 @@
|
|||||||
|
import torch.nn as nn
|
||||||
|
|
||||||
|
|
||||||
|
class NeuralNet(nn.Module):
|
||||||
|
def __init__(self, input_size, hidden_size, num_classes):
|
||||||
|
super(NeuralNet, self).__init__()
|
||||||
|
self.l1 = nn.Linear(input_size, hidden_size)
|
||||||
|
self.l2 = nn.Linear(hidden_size, hidden_size)
|
||||||
|
self.l3 = nn.Linear(hidden_size, num_classes)
|
||||||
|
self.relu = nn.ReLU()
|
||||||
|
|
||||||
|
def forward(self, x):
|
||||||
|
out = self.l1(x)
|
||||||
|
out = self.relu(out)
|
||||||
|
out = self.l2(out)
|
||||||
|
out = self.relu(out)
|
||||||
|
out = self.l3(out)
|
||||||
|
# no activation and no softmax at the end
|
||||||
|
return out
|
45
ia/nltk_utils.py
Normal file
45
ia/nltk_utils.py
Normal file
@ -0,0 +1,45 @@
|
|||||||
|
import nltk
|
||||||
|
import numpy as np
|
||||||
|
from nltk.stem.porter import PorterStemmer
|
||||||
|
|
||||||
|
stemmer = PorterStemmer()
|
||||||
|
|
||||||
|
|
||||||
|
def tokenize(sentence):
|
||||||
|
"""
|
||||||
|
split sentence into array of words/tokens
|
||||||
|
a token can be a word or punctuation character, or number
|
||||||
|
"""
|
||||||
|
# TODO: implement english and others languages
|
||||||
|
return nltk.word_tokenize(sentence, language="french")
|
||||||
|
|
||||||
|
|
||||||
|
def stem(word):
|
||||||
|
"""
|
||||||
|
stemming = find the root form of the word
|
||||||
|
examples:
|
||||||
|
words = ["organize", "organizes", "organizing"]
|
||||||
|
words = [stem(w) for w in words]
|
||||||
|
-> ["organ", "organ", "organ"]
|
||||||
|
"""
|
||||||
|
return stemmer.stem(word.lower())
|
||||||
|
|
||||||
|
|
||||||
|
def bag_of_words(tokenized_sentence, words):
|
||||||
|
"""
|
||||||
|
return bag of words array:
|
||||||
|
1 for each known word that exists in the sentence, 0 otherwise
|
||||||
|
example:
|
||||||
|
sentence = ["hello", "how", "are", "you"]
|
||||||
|
words = ["hi", "hello", "I", "you", "bye", "thank", "cool"]
|
||||||
|
bog = [ 0 , 1 , 0 , 1 , 0 , 0 , 0]
|
||||||
|
"""
|
||||||
|
# stem each word
|
||||||
|
sentence_words = [stem(word) for word in tokenized_sentence]
|
||||||
|
# initialize bag with 0 for each word
|
||||||
|
bag = np.zeros(len(words), dtype='float32')
|
||||||
|
for idx, w in enumerate(words):
|
||||||
|
if w in sentence_words:
|
||||||
|
bag[idx] = 1
|
||||||
|
|
||||||
|
return bag
|
63
ia/process.py
Normal file
63
ia/process.py
Normal file
@ -0,0 +1,63 @@
|
|||||||
|
import os
|
||||||
|
|
||||||
|
import torch
|
||||||
|
from unidecode import unidecode
|
||||||
|
|
||||||
|
import get_path_file
|
||||||
|
from ia.model import NeuralNet
|
||||||
|
from ia.nltk_utils import bag_of_words, tokenize
|
||||||
|
|
||||||
|
path = os.path.dirname(get_path_file.__file__)
|
||||||
|
|
||||||
|
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
||||||
|
|
||||||
|
file = path + "/ia/trained_model.pth"
|
||||||
|
data = torch.load(file, map_location=device)
|
||||||
|
|
||||||
|
input_size = data["input_size"]
|
||||||
|
hidden_size = data["hidden_size"]
|
||||||
|
output_size = data["output_size"]
|
||||||
|
all_words = data['all_words']
|
||||||
|
tags = data['tags']
|
||||||
|
model_state = data["model_state"]
|
||||||
|
|
||||||
|
model = NeuralNet(input_size, hidden_size, output_size).to(device)
|
||||||
|
model.load_state_dict(model_state)
|
||||||
|
model.eval()
|
||||||
|
|
||||||
|
|
||||||
|
def get_tag_for_sentence(input_sentence):
|
||||||
|
"""
|
||||||
|
Return the matching tag of the input_sentence given in parameter.
|
||||||
|
It usually is what the STT engine recognise or what the user's type when using no-voice mode
|
||||||
|
|
||||||
|
Parameters
|
||||||
|
----------
|
||||||
|
input_sentence is your sentence
|
||||||
|
|
||||||
|
Returns tag from the intents.json file
|
||||||
|
-------
|
||||||
|
|
||||||
|
"""
|
||||||
|
sentence = unidecode(input_sentence) # convert accent to better recognition
|
||||||
|
sentence = tokenize(sentence)
|
||||||
|
X = bag_of_words(sentence, all_words)
|
||||||
|
X = X.reshape(1, X.shape[0])
|
||||||
|
X = torch.from_numpy(X).to(device)
|
||||||
|
|
||||||
|
output = model(X)
|
||||||
|
_, predicted = torch.max(output, dim=1)
|
||||||
|
|
||||||
|
tag = tags[predicted.item()]
|
||||||
|
|
||||||
|
probs = torch.softmax(output, dim=1)
|
||||||
|
prob = probs[0][predicted.item()]
|
||||||
|
if prob.item() > 0.75 and len(sentence) > 2:
|
||||||
|
return "MATCHING INTENT : " + tag + " (" + str(prob.item()) + ")"
|
||||||
|
# return intents.intents.get_matching_intent_for_tag(tag).get('tag')
|
||||||
|
else:
|
||||||
|
return 'dont_understand'
|
||||||
|
|
||||||
|
|
||||||
|
if __name__ == '__main__':
|
||||||
|
print(get_tag_for_sentence("Hey, est il"))
|
138
ia/train.py
Normal file
138
ia/train.py
Normal file
@ -0,0 +1,138 @@
|
|||||||
|
import os
|
||||||
|
|
||||||
|
import numpy as np
|
||||||
|
import torch
|
||||||
|
import torch.nn as nn
|
||||||
|
from torch.utils.data import Dataset, DataLoader
|
||||||
|
|
||||||
|
import get_path_file
|
||||||
|
from ia.model import NeuralNet
|
||||||
|
from ia.nltk_utils import bag_of_words, tokenize, stem
|
||||||
|
from utils import intents_utils
|
||||||
|
|
||||||
|
path = os.path.dirname(get_path_file.__file__)
|
||||||
|
|
||||||
|
|
||||||
|
def train():
|
||||||
|
intents_utils.register_all_intents() # important
|
||||||
|
all_intents_patterns = intents_utils.get_all_patterns()
|
||||||
|
|
||||||
|
all_words = []
|
||||||
|
tags = []
|
||||||
|
xy = []
|
||||||
|
# loop through each sentence in our intents patterns
|
||||||
|
for intent in all_intents_patterns:
|
||||||
|
tag = intent
|
||||||
|
# add to tag list
|
||||||
|
tags.append(tag)
|
||||||
|
|
||||||
|
for pattern in all_intents_patterns[intent]:
|
||||||
|
# tokenize each word in the sentence
|
||||||
|
w = tokenize(pattern)
|
||||||
|
# add to our words list
|
||||||
|
all_words.extend(w)
|
||||||
|
# add to xy pair
|
||||||
|
xy.append((w, tag))
|
||||||
|
|
||||||
|
# stem and lower each word
|
||||||
|
ignore_words = ['?', '.', '!']
|
||||||
|
all_words = [stem(w) for w in all_words if w not in ignore_words]
|
||||||
|
# remove duplicates and sort
|
||||||
|
all_words = sorted(set(all_words))
|
||||||
|
tags = sorted(set(tags))
|
||||||
|
|
||||||
|
print(len(xy), "patterns")
|
||||||
|
print(len(tags), "tags:", tags)
|
||||||
|
print(len(all_words), "unique stemmed words:", all_words)
|
||||||
|
|
||||||
|
# create training data
|
||||||
|
X_train = []
|
||||||
|
y_train = []
|
||||||
|
for (pattern_sentence, tag) in xy:
|
||||||
|
# X: bag of words for each pattern_sentence
|
||||||
|
bag = bag_of_words(pattern_sentence, all_words)
|
||||||
|
X_train.append(bag)
|
||||||
|
# y: PyTorch CrossEntropyLoss needs only class labels, not one-hot
|
||||||
|
label = tags.index(tag)
|
||||||
|
y_train.append(label)
|
||||||
|
|
||||||
|
X_train = np.array(X_train)
|
||||||
|
y_train = np.array(y_train)
|
||||||
|
|
||||||
|
# Hyper-parameters
|
||||||
|
num_epochs = 1000
|
||||||
|
batch_size = 8
|
||||||
|
learning_rate = 0.001
|
||||||
|
input_size = len(X_train[0])
|
||||||
|
hidden_size = 8
|
||||||
|
output_size = len(tags)
|
||||||
|
print(input_size, output_size)
|
||||||
|
|
||||||
|
class ChatDataset(Dataset):
|
||||||
|
|
||||||
|
def __init__(self):
|
||||||
|
self.n_samples = len(X_train)
|
||||||
|
self.x_data = X_train
|
||||||
|
self.y_data = y_train
|
||||||
|
|
||||||
|
# support indexing such that dataset[i] can be used to get i-th sample
|
||||||
|
def __getitem__(self, index):
|
||||||
|
return self.x_data[index], self.y_data[index]
|
||||||
|
|
||||||
|
# we can call len(dataset) to return the size
|
||||||
|
def __len__(self):
|
||||||
|
return self.n_samples
|
||||||
|
|
||||||
|
dataset = ChatDataset()
|
||||||
|
train_loader = DataLoader(dataset=dataset,
|
||||||
|
batch_size=batch_size,
|
||||||
|
shuffle=True,
|
||||||
|
num_workers=0)
|
||||||
|
|
||||||
|
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
||||||
|
|
||||||
|
model = NeuralNet(input_size, hidden_size, output_size).to(device)
|
||||||
|
|
||||||
|
# Loss and optimizer
|
||||||
|
criterion = nn.CrossEntropyLoss()
|
||||||
|
optimizer = torch.optim.Adam(model.parameters(), lr=learning_rate)
|
||||||
|
|
||||||
|
# Train the model
|
||||||
|
for epoch in range(num_epochs):
|
||||||
|
for (words, labels) in train_loader:
|
||||||
|
words = words.to(device)
|
||||||
|
labels = labels.to(dtype=torch.long).to(device)
|
||||||
|
|
||||||
|
# Forward pass
|
||||||
|
outputs = model(words)
|
||||||
|
# if y would be one-hot, we must apply
|
||||||
|
# labels = torch.max(labels, 1)[1]
|
||||||
|
loss = criterion(outputs, labels)
|
||||||
|
|
||||||
|
# Backward and optimize
|
||||||
|
optimizer.zero_grad()
|
||||||
|
loss.backward()
|
||||||
|
optimizer.step()
|
||||||
|
|
||||||
|
if (epoch + 1) % 100 == 0:
|
||||||
|
print(f'Epoch [{epoch + 1}/{num_epochs}], Loss: {loss.item():.4f}')
|
||||||
|
|
||||||
|
print(f'Final loss: {loss.item():.4f}')
|
||||||
|
|
||||||
|
data = {
|
||||||
|
"model_state": model.state_dict(),
|
||||||
|
"input_size": input_size,
|
||||||
|
"hidden_size": hidden_size,
|
||||||
|
"output_size": output_size,
|
||||||
|
"all_words": all_words,
|
||||||
|
"tags": tags
|
||||||
|
}
|
||||||
|
|
||||||
|
file = path + "/ia/trained_model.pth"
|
||||||
|
torch.save(data, file)
|
||||||
|
|
||||||
|
print(f'Training complete. file saved to {file}')
|
||||||
|
|
||||||
|
|
||||||
|
if __name__ == '__main__':
|
||||||
|
train()
|
BIN
ia/trained_model.pth
Normal file
BIN
ia/trained_model.pth
Normal file
Binary file not shown.
0
intents/daily/__init__.py
Normal file
0
intents/daily/__init__.py
Normal file
@ -1,6 +1,15 @@
|
|||||||
{
|
{
|
||||||
"name": "Date and Time",
|
"name": "Date and Time",
|
||||||
"languages": ["FR-FR", "EN-EN"],
|
"languages": [
|
||||||
"intents": ["what_time_is_it", "what_day_is_it"],
|
"FR-FR",
|
||||||
"variables": ["time", "day"]
|
"EN-EN"
|
||||||
|
],
|
||||||
|
"intents": [
|
||||||
|
"what_time_is_it",
|
||||||
|
"what_day_is_it"
|
||||||
|
],
|
||||||
|
"variables": [
|
||||||
|
"time",
|
||||||
|
"day"
|
||||||
|
]
|
||||||
}
|
}
|
@ -2,12 +2,10 @@ import utils.intents_utils
|
|||||||
|
|
||||||
|
|
||||||
def what_time_is_it():
|
def what_time_is_it():
|
||||||
return ""
|
response = utils.intents_utils.get_response("what_time_is_it")
|
||||||
|
response.replace("{time}", "18:41")
|
||||||
|
return response
|
||||||
|
|
||||||
|
|
||||||
def what_day_is_it():
|
def what_day_is_it():
|
||||||
return ""
|
return ""
|
||||||
|
|
||||||
|
|
||||||
if __name__ == '__main__':
|
|
||||||
print(utils.intents_utils.get_response("what_time_is_it"))
|
|
||||||
|
@ -1,38 +0,0 @@
|
|||||||
import glob
|
|
||||||
import json
|
|
||||||
import os
|
|
||||||
|
|
||||||
import get_path_file
|
|
||||||
|
|
||||||
intents = dict()
|
|
||||||
path = os.path.dirname(get_path_file.__file__)
|
|
||||||
|
|
||||||
|
|
||||||
def register_all_intents():
|
|
||||||
global intents
|
|
||||||
|
|
||||||
result = {}
|
|
||||||
|
|
||||||
files = glob.glob(path + "/intents/**/info.json", recursive=True)
|
|
||||||
for f in files:
|
|
||||||
with open(f, "rb") as infile:
|
|
||||||
intent_info_json = json.load(infile)
|
|
||||||
intents_in_info = intent_info_json['intents']
|
|
||||||
intent_path = str(f).replace('info.json', '')
|
|
||||||
|
|
||||||
for intent in intents_in_info:
|
|
||||||
result[intent] = intent_path
|
|
||||||
|
|
||||||
intents = result
|
|
||||||
|
|
||||||
|
|
||||||
def get_all_intents():
|
|
||||||
if len(intents) >= 1:
|
|
||||||
return intents
|
|
||||||
else:
|
|
||||||
register_all_intents()
|
|
||||||
return get_all_intents()
|
|
||||||
|
|
||||||
|
|
||||||
if __name__ == '__main__':
|
|
||||||
print(get_all_intents())
|
|
@ -1 +1,5 @@
|
|||||||
flask
|
flask~=2.0.1
|
||||||
|
Unidecode~=1.2.0
|
||||||
|
nltk~=3.6.2
|
||||||
|
torch~=1.9.0
|
||||||
|
numpy~=1.21.1
|
@ -1,8 +1,52 @@
|
|||||||
|
import glob
|
||||||
import json
|
import json
|
||||||
import os
|
import os
|
||||||
import random
|
import random
|
||||||
|
|
||||||
import intents.intents
|
import get_path_file
|
||||||
|
|
||||||
|
all_intents = dict()
|
||||||
|
path = os.path.dirname(get_path_file.__file__)
|
||||||
|
|
||||||
|
|
||||||
|
def register_all_intents():
|
||||||
|
global all_intents
|
||||||
|
|
||||||
|
result = {}
|
||||||
|
|
||||||
|
files = glob.glob(path + "/intents/**/info.json", recursive=True)
|
||||||
|
for f in files:
|
||||||
|
with open(f, "rb") as infile:
|
||||||
|
intent_info_json = json.load(infile)
|
||||||
|
intents_in_info = intent_info_json['intents']
|
||||||
|
intent_path = str(f).replace('info.json', '')
|
||||||
|
|
||||||
|
for intent in intents_in_info:
|
||||||
|
result[intent] = intent_path
|
||||||
|
|
||||||
|
all_intents = result
|
||||||
|
|
||||||
|
|
||||||
|
def get_all_intents():
|
||||||
|
if len(all_intents) >= 1:
|
||||||
|
return all_intents
|
||||||
|
else:
|
||||||
|
register_all_intents()
|
||||||
|
return get_all_intents()
|
||||||
|
|
||||||
|
|
||||||
|
def get_all_patterns():
|
||||||
|
all_patterns = {}
|
||||||
|
|
||||||
|
# need to run register first
|
||||||
|
if not all_intents:
|
||||||
|
print("Warning : No intent found at all, don't forget to register them!")
|
||||||
|
return {}
|
||||||
|
|
||||||
|
for intent in all_intents:
|
||||||
|
all_patterns[intent] = get_patterns(intent)
|
||||||
|
|
||||||
|
return all_patterns
|
||||||
|
|
||||||
|
|
||||||
def get_patterns(intent_tag):
|
def get_patterns(intent_tag):
|
||||||
@ -13,6 +57,12 @@ def get_patterns(intent_tag):
|
|||||||
return {}
|
return {}
|
||||||
|
|
||||||
|
|
||||||
|
def get_response(intent_tag):
|
||||||
|
if exists(intent_tag):
|
||||||
|
responses = get_responses(intent_tag)
|
||||||
|
return random.choice(responses)
|
||||||
|
|
||||||
|
|
||||||
def get_responses(intent_tag):
|
def get_responses(intent_tag):
|
||||||
if exists(intent_tag):
|
if exists(intent_tag):
|
||||||
responses = get_lang_for_intent(intent_tag).get(intent_tag).get('responses')
|
responses = get_lang_for_intent(intent_tag).get(intent_tag).get('responses')
|
||||||
@ -21,18 +71,12 @@ def get_responses(intent_tag):
|
|||||||
return {}
|
return {}
|
||||||
|
|
||||||
|
|
||||||
def get_response(intent_tag):
|
|
||||||
if exists(intent_tag):
|
|
||||||
responses = get_responses(intent_tag)
|
|
||||||
return random.choice(responses)
|
|
||||||
|
|
||||||
|
|
||||||
def get_lang_for_intent(intent_tag):
|
def get_lang_for_intent(intent_tag):
|
||||||
language = "fr-fr" # TODO: use config value
|
language = "fr-fr" # TODO: use config value
|
||||||
|
|
||||||
# first we check the intent
|
# first we check the intent
|
||||||
if exists(intent_tag):
|
if exists(intent_tag):
|
||||||
lang_path = str(intents.intents.get_all_intents().get(intent_tag))
|
lang_path = str(get_all_intents().get(intent_tag))
|
||||||
lang_path = lang_path + 'lang/' + language + '.json'
|
lang_path = lang_path + 'lang/' + language + '.json'
|
||||||
|
|
||||||
if os.path.exists(lang_path):
|
if os.path.exists(lang_path):
|
||||||
@ -44,7 +88,7 @@ def get_lang_for_intent(intent_tag):
|
|||||||
|
|
||||||
|
|
||||||
def exists(intent_tag):
|
def exists(intent_tag):
|
||||||
if intent_tag in intents.intents.get_all_intents():
|
if intent_tag in get_all_intents():
|
||||||
return True
|
return True
|
||||||
else:
|
else:
|
||||||
return False
|
return False
|
||||||
|
Reference in New Issue
Block a user