import json import tempfile import requests from flask import request, Flask app = Flask(__name__) # .WAV (i.e.) FILE REQUEST @app.route("/process_audio_request_file", methods=['POST']) def process_audio_request_android(): print("[" + request.remote_addr + "] - New STT request") audio_temp_file = tempfile.NamedTemporaryFile(prefix='jarvis-audio_', suffix='_client') audio_temp_file.write(request.data) print(audio_temp_file.name) return {"transcription": text_recognition_whisperasr(audio_temp_file.name), "answer": "WIP"} # send request to whisper-asr server (docker) def text_recognition_whisperasr(audio_file): headers = { 'accept': 'application/json', # 'Content-Type': 'multipart/form-data', } params = { 'task': 'transcribe', # TODO: add to config 'language': 'fr', 'output': 'json', } files = { 'audio_file': open(audio_file, 'rb'), } # TODO: add to config response = requests.post('https://whisper.broillet.ch/asr', params=params, headers=headers, files=files) return json.loads(response.text)['text'] # NOT IMPLEMENTED RIGHT NOW / to use with local whisper cpp (cpu) """ def local_recognition(audio_file, time_of_request): path = os.path.dirname(get_path_file.__file__) print("Loading model and recognition") model = path + "/whisper/models/" + "ggml-small.bin" os.system(path + "/whisper/main -l fr -t 8 -m " + model + " -f " + audio_file + " -otxt") # + "> /dev/null 2>&1") output = open(audio_file + ".txt").read() # time_of_resolution = time.perf_counter() # print(output + f" - {time_of_resolution - time_of_request:0.4f} seconds") return jsonify(transcription=output, time=5, answer="WIP...") """ def start_server(): app.config['JSON_AS_ASCII'] = False # TODO: add to config app.run(port=5000, debug=False, host='0.0.0.0', threaded=True) if __name__ == '__main__': start_server()