easy-local-alpr/alpr_api.py

262 lines
9.4 KiB
Python

import json
import os
import sys
import threading
import time
from time import sleep
import ultimateAlprSdk
from PIL import Image
from flask import Flask, request, jsonify, render_template
counter = 0
"""
Hi there!
This script is a REST API server that uses the ultimateALPR SDK to process images and return the license plate
information. The server is created using Flask and the ultimateALPR SDK is used to process the images.
See the README.md file for more information on how to run this script.
"""
# Defines the default JSON configuration. More information at https://www.doubango.org/SDKs/anpr/docs/Configuration_options.html
JSON_CONFIG = {
"debug_level": "info",
"debug_write_input_image_enabled": False,
"debug_internal_data_path": ".",
"num_threads": -1,
"gpgpu_enabled": True,
"max_latency": -1,
"klass_vcr_gamma": 1.5,
"detect_roi": [0, 0, 0, 0],
"detect_minscore": 0.35,
"car_noplate_detect_min_score": 0.8,
"pyramidal_search_enabled": True,
"pyramidal_search_sensitivity": 0.38, # default 0.28
"pyramidal_search_minscore": 0.8,
"pyramidal_search_min_image_size_inpixels": 800,
"recogn_rectify_enabled": True, # heavy on cpu
"recogn_minscore": 0.4,
"recogn_score_type": "min"
}
IMAGE_TYPES_MAPPING = {
'RGB': ultimateAlprSdk.ULTALPR_SDK_IMAGE_TYPE_RGB24,
'RGBA': ultimateAlprSdk.ULTALPR_SDK_IMAGE_TYPE_RGBA32,
'L': ultimateAlprSdk.ULTALPR_SDK_IMAGE_TYPE_Y
}
def load_engine():
bundle_dir = getattr(sys, '_MEIPASS', os.path.abspath(os.path.dirname(__file__)))
JSON_CONFIG["assets_folder"] = os.path.join(bundle_dir, "assets")
JSON_CONFIG["charset"] = "latin"
JSON_CONFIG["car_noplate_detect_enabled"] = False # Whether to detect and return cars with no plate
JSON_CONFIG[
"ienv_enabled"] = False # Whether to enable Image Enhancement for Night-Vision (IENV). More info about IENV at https://www.doubango.org/SDKs/anpr/docs/Features.html#image-enhancement-for-night-vision-ienv. Default: true for x86-64 and false for ARM.
JSON_CONFIG[
"openvino_enabled"] = False # Whether to enable OpenVINO. Tensorflow will be used when OpenVINO is disabled
JSON_CONFIG[
"openvino_device"] = "GPU" # Defines the OpenVINO device to use (CPU, GPU, FPGA...). More info at https://www.doubango.org/SDKs/anpr/docs/Configuration_options.html#openvino-device
JSON_CONFIG["npu_enabled"] = False # Whether to enable NPU (Neural Processing Unit) acceleration
JSON_CONFIG[
"klass_lpci_enabled"] = False # Whether to enable License Plate Country Identification (LPCI). More info at https://www.doubango.org/SDKs/anpr/docs/Features.html#license-plate-country-identification-lpci
JSON_CONFIG[
"klass_vcr_enabled"] = False # Whether to enable Vehicle Color Recognition (VCR). More info at https://www.doubango.org/SDKs/anpr/docs/Features.html#vehicle-color-recognition-vcr
JSON_CONFIG[
"klass_vmmr_enabled"] = False # Whether to enable Vehicle Make Model Recognition (VMMR). More info at https://www.doubango.org/SDKs/anpr/docs/Features.html#vehicle-make-model-recognition-vmmr
JSON_CONFIG[
"klass_vbsr_enabled"] = False # Whether to enable Vehicle Body Style Recognition (VBSR). More info at https://www.doubango.org/SDKs/anpr/docs/Features.html#vehicle-body-style-recognition-vbsr
JSON_CONFIG["license_token_file"] = "" # Path to license token file
JSON_CONFIG["license_token_data"] = "" # Base64 license token data
result = ultimateAlprSdk.UltAlprSdkEngine_init(json.dumps(JSON_CONFIG))
if not result.isOK():
raise RuntimeError("Init failed: %s" % result.phrase())
while counter < 3000:
sleep(1)
unload_engine()
load_engine()
def unload_engine():
result = ultimateAlprSdk.UltAlprSdkEngine_deInit()
if not result.isOK():
raise RuntimeError("DeInit failed: %s" % result.phrase())
def process_image(image: Image) -> str:
global counter
counter += 1
width, height = image.size
if image.mode in IMAGE_TYPES_MAPPING:
image_type = IMAGE_TYPES_MAPPING[image.mode]
else:
raise ValueError("Invalid mode: %s" % image.mode)
result = ultimateAlprSdk.UltAlprSdkEngine_process(
image_type,
image.tobytes(), # type(x) == bytes
width,
height,
0, # stride
1 # exifOrientation (already rotated in load_image -> use default value: 1)
)
if not result.isOK():
raise RuntimeError("Process failed: %s" % result.phrase())
else:
return result.json()
def create_rest_server_flask():
app = Flask(__name__)
@app.route('/v1/<string:domain>/<string:module>', methods=['POST'])
def alpr(domain, module):
# Only care about the ALPR endpoint
if domain == 'image' and module == 'alpr':
interference = time.time()
if 'upload' not in request.files:
return jsonify({'error': 'No image found'})
image = request.files['upload']
if image.filename == '':
return jsonify({'error': 'No selected file'})
image = Image.open(image)
result = convert_to_cpai_compatible(process_image(image))
if len(result['predictions']) == 0:
print("No plate found in the image, trying to split the image")
predictions_found = []
width, height = image.size
cell_width = width // 3
cell_height = height // 3
# Define which cells to process (2, 4, 5, 6, 8, 9)
cells_to_process = [2, 4, 5, 6, 8, 9]
# Loop through each cell
for cell_index in range(1, 10):
# Calculate row and column of the cell
row = (cell_index - 1) // 3
col = (cell_index - 1) % 3
# Calculate bounding box of the cell
left = col * cell_width
upper = row * cell_height
right = left + cell_width
lower = upper + cell_height
# Check if this cell should be processed
if cell_index in cells_to_process:
# Extract the cell as a new image
cell_image = image.crop((left, upper, right, lower))
result_cell = json.loads(process_image(cell_image))
if 'plates' in result_cell:
for plate in result_cell['plates']:
warpedBox = plate['warpedBox']
x_coords = warpedBox[0::2]
y_coords = warpedBox[1::2]
x_min = min(x_coords) + left
x_max = max(x_coords) + left
y_min = min(y_coords) + upper
y_max = max(y_coords) + upper
predictions_found.append({
'confidence': plate['confidences'][0] / 100,
'label': "Plate: " + plate['text'],
'plate': plate['text'],
'x_min': x_min,
'x_max': x_max,
'y_min': y_min,
'y_max': y_max
})
if len(predictions_found) > 0:
# add the prediction with the highest confidence
result['predictions'].append(max(predictions_found, key=lambda x: x['confidence']))
result['processMs'] = round((time.time() - interference) * 1000, 2)
result['inferenceMs'] = result['processMs'] # same as processMs
return jsonify(result)
else:
return jsonify({'error': 'Endpoint not implemented'}), 404
@app.route('/')
def index():
return render_template('index.html')
return app
def convert_to_cpai_compatible(result):
result = json.loads(result)
response = {
'success': "true",
'processMs': result['duration'],
'inferenceMs': result['duration'],
'predictions': [],
'message': '',
'moduleId': 'ALPR',
'moduleName': 'License Plate Reader',
'code': 200,
'command': 'alpr',
'requestId': 'null',
'inferenceDevice': 'none',
'analysisRoundTripMs': 0,
'processedBy': 'none',
'timestamp': ''
}
if 'plates' in result:
plates = result['plates']
for plate in plates:
warpedBox = plate['warpedBox']
x_coords = warpedBox[0::2]
y_coords = warpedBox[1::2]
x_min = min(x_coords)
x_max = max(x_coords)
y_min = min(y_coords)
y_max = max(y_coords)
response['predictions'].append({
'confidence': plate['confidences'][0] / 100,
'label': "Plate: " + plate['text'],
'plate': plate['text'],
'x_min': x_min,
'x_max': x_max,
'y_min': y_min,
'y_max': y_max
})
return response
if __name__ == '__main__':
engine = threading.Thread(target=load_engine, daemon=True)
engine.start()
app = create_rest_server_flask()
app.run(host='0.0.0.0', port=5000)
unload_engine()