mirror of
https://huggingface.co/spaces/ECCV2022/dis-background-removal
synced 2024-11-29 19:24:33 +01:00
154 lines
5.1 KiB
Python
154 lines
5.1 KiB
Python
import cv2
|
|
import gradio as gr
|
|
import os
|
|
from PIL import Image
|
|
import numpy as np
|
|
import torch
|
|
from torch.autograd import Variable
|
|
from torchvision import transforms
|
|
import torch.nn.functional as F
|
|
import gdown
|
|
import matplotlib.pyplot as plt
|
|
import warnings
|
|
warnings.filterwarnings("ignore")
|
|
|
|
os.system("git clone https://github.com/xuebinqin/DIS")
|
|
os.system("mv DIS/IS-Net/* .")
|
|
|
|
# project imports
|
|
from data_loader_cache import normalize, im_reader, im_preprocess
|
|
from models import *
|
|
|
|
#Helpers
|
|
device = 'cuda' if torch.cuda.is_available() else 'cpu'
|
|
|
|
# Download official weights
|
|
if not os.path.exists("saved_models"):
|
|
os.mkdir("saved_models")
|
|
os.system("mv isnet.pth saved_models/")
|
|
|
|
class GOSNormalize(object):
|
|
'''
|
|
Normalize the Image using torch.transforms
|
|
'''
|
|
def __init__(self, mean=[0.485,0.456,0.406], std=[0.229,0.224,0.225]):
|
|
self.mean = mean
|
|
self.std = std
|
|
|
|
def __call__(self,image):
|
|
image = normalize(image,self.mean,self.std)
|
|
return image
|
|
|
|
|
|
transform = transforms.Compose([GOSNormalize([0.5,0.5,0.5],[1.0,1.0,1.0])])
|
|
|
|
def load_image(im_path, hypar):
|
|
im = im_reader(im_path)
|
|
im, im_shp = im_preprocess(im, hypar["cache_size"])
|
|
im = torch.divide(im,255.0)
|
|
shape = torch.from_numpy(np.array(im_shp))
|
|
return transform(im).unsqueeze(0), shape.unsqueeze(0) # make a batch of image, shape
|
|
|
|
|
|
def build_model(hypar,device):
|
|
net = hypar["model"]#GOSNETINC(3,1)
|
|
|
|
# convert to half precision
|
|
if(hypar["model_digit"]=="half"):
|
|
net.half()
|
|
for layer in net.modules():
|
|
if isinstance(layer, nn.BatchNorm2d):
|
|
layer.float()
|
|
|
|
net.to(device)
|
|
|
|
if(hypar["restore_model"]!=""):
|
|
net.load_state_dict(torch.load(hypar["model_path"]+"/"+hypar["restore_model"], map_location=device))
|
|
net.to(device)
|
|
net.eval()
|
|
return net
|
|
|
|
|
|
def predict(net, inputs_val, shapes_val, hypar, device):
|
|
'''
|
|
Given an Image, predict the mask
|
|
'''
|
|
net.eval()
|
|
|
|
if(hypar["model_digit"]=="full"):
|
|
inputs_val = inputs_val.type(torch.FloatTensor)
|
|
else:
|
|
inputs_val = inputs_val.type(torch.HalfTensor)
|
|
|
|
|
|
inputs_val_v = Variable(inputs_val, requires_grad=False).to(device) # wrap inputs in Variable
|
|
|
|
ds_val = net(inputs_val_v)[0] # list of 6 results
|
|
|
|
pred_val = ds_val[0][0,:,:,:] # B x 1 x H x W # we want the first one which is the most accurate prediction
|
|
|
|
## recover the prediction spatial size to the orignal image size
|
|
pred_val = torch.squeeze(F.upsample(torch.unsqueeze(pred_val,0),(shapes_val[0][0],shapes_val[0][1]),mode='bilinear'))
|
|
|
|
ma = torch.max(pred_val)
|
|
mi = torch.min(pred_val)
|
|
pred_val = (pred_val-mi)/(ma-mi) # max = 1
|
|
|
|
if device == 'cuda': torch.cuda.empty_cache()
|
|
return (pred_val.detach().cpu().numpy()*255).astype(np.uint8) # it is the mask we need
|
|
|
|
# Set Parameters
|
|
hypar = {} # paramters for inferencing
|
|
|
|
|
|
hypar["model_path"] ="./saved_models" ## load trained weights from this path
|
|
hypar["restore_model"] = "isnet.pth" ## name of the to-be-loaded weights
|
|
hypar["interm_sup"] = False ## indicate if activate intermediate feature supervision
|
|
|
|
## choose floating point accuracy --
|
|
hypar["model_digit"] = "full" ## indicates "half" or "full" accuracy of float number
|
|
hypar["seed"] = 0
|
|
|
|
hypar["cache_size"] = [1024, 1024] ## cached input spatial resolution, can be configured into different size
|
|
|
|
## data augmentation parameters ---
|
|
hypar["input_size"] = [1024, 1024] ## mdoel input spatial size, usually use the same value hypar["cache_size"], which means we don't further resize the images
|
|
hypar["crop_size"] = [1024, 1024] ## random crop size from the input, it is usually set as smaller than hypar["cache_size"], e.g., [920,920] for data augmentation
|
|
|
|
hypar["model"] = ISNetDIS()
|
|
|
|
# Build Model
|
|
net = build_model(hypar, device)
|
|
|
|
|
|
def inference(image):
|
|
image_path = image
|
|
|
|
image_tensor, orig_size = load_image(image_path, hypar)
|
|
mask = predict(net, image_tensor, orig_size, hypar, device)
|
|
|
|
pil_mask = Image.fromarray(mask).convert('L')
|
|
im_rgb = Image.open(image).convert("RGB")
|
|
|
|
im_rgba = im_rgb.copy()
|
|
im_rgba.putalpha(pil_mask)
|
|
|
|
return [im_rgba, pil_mask]
|
|
|
|
|
|
title = "Highly Accurate Dichotomous Image Segmentation"
|
|
description = "This is an unofficial demo for DIS, a model that can remove the background from a given image. To use it, simply upload your image, or click one of the examples to load them. Read more at the links below.<br>GitHub: https://github.com/xuebinqin/DIS<br>Telegram bot: https://t.me/restoration_photo_bot<br>[![](https://img.shields.io/twitter/follow/DoEvent?label=@DoEvent&style=social)](https://twitter.com/DoEvent)"
|
|
article = "<div><center><img src='https://visitor-badge.glitch.me/badge?page_id=max_skobeev_dis_cmp_public' alt='visitor badge'></center></div>"
|
|
|
|
interface = gr.Interface(
|
|
fn=inference,
|
|
inputs=gr.Image(type='filepath'),
|
|
outputs=[gr.Image(type='filepath', format="png"), gr.Image(type='filepath', format="png")],
|
|
examples=[['robot.png'], ['ship.png']],
|
|
title=title,
|
|
description=description,
|
|
article=article,
|
|
flagging_mode="never",
|
|
cache_mode="lazy",
|
|
).queue().launch(show_error=True)
|