import os import time import numpy as np from skimage import io import time from glob import glob from tqdm import tqdm import torch, gc import torch.nn as nn from torch.autograd import Variable import torch.optim as optim import torch.nn.functional as F from torchvision.transforms.functional import normalize from models import * if __name__ == "__main__": dataset_path="../demo_datasets/your_dataset" #Your dataset path model_path="../saved_models/IS-Net/isnet-general-use.pth" # the model path result_path="../demo_datasets/your_dataset_result" #The folder path that you want to save the results input_size=[1024,1024] net=ISNetDIS() if torch.cuda.is_available(): net.load_state_dict(torch.load(model_path)) net=net.cuda() else: net.load_state_dict(torch.load(model_path,map_location="cpu")) net.eval() im_list = glob(dataset_path+"/*.jpg")+glob(dataset_path+"/*.JPG")+glob(dataset_path+"/*.jpeg")+glob(dataset_path+"/*.JPEG")+glob(dataset_path+"/*.png")+glob(dataset_path+"/*.PNG")+glob(dataset_path+"/*.bmp")+glob(dataset_path+"/*.BMP")+glob(dataset_path+"/*.tiff")+glob(dataset_path+"/*.TIFF") for i, im_path in tqdm(enumerate(im_list), total=len(im_list)): print("im_path: ", im_path) im = io.imread(im_path) if len(im.shape) < 3: im = im[:, :, np.newaxis] im_shp=im.shape[0:2] im_tensor = torch.tensor(im, dtype=torch.float32).permute(2,0,1) im_tensor = F.upsample(torch.unsqueeze(im_tensor,0), input_size, mode="bilinear").type(torch.uint8) image = torch.divide(im_tensor,255.0) image = normalize(image,[0.5,0.5,0.5],[1.0,1.0,1.0]) if torch.cuda.is_available(): image=image.cuda() result=net(image) result=torch.squeeze(F.upsample(result[0][0],im_shp,mode='bilinear'),0) ma = torch.max(result) mi = torch.min(result) result = (result-mi)/(ma-mi) im_name=im_path.split('/')[-1].split('.')[0] io.imsave(os.path.join(result_path,im_name+".png"),(result*255).permute(1,2,0).cpu().data.numpy().astype(np.uint8))