## data loader ## Ackownledgement: ## We would like to thank Dr. Ibrahim Almakky (https://scholar.google.co.uk/citations?user=T9MTcK0AAAAJ&hl=en) ## for his helps in implementing cache machanism of our DIS dataloader. from __future__ import print_function, division import numpy as np import random from copy import deepcopy import json from tqdm import tqdm from skimage import io import os from glob import glob import torch from torch.utils.data import Dataset, DataLoader from torchvision import transforms, utils from torchvision.transforms.functional import normalize import torch.nn.functional as F #### --------------------- DIS dataloader cache ---------------------#### def get_im_gt_name_dict(datasets, flag='valid'): print("------------------------------", flag, "--------------------------------") name_im_gt_list = [] for i in range(len(datasets)): print("--->>>", flag, " dataset ",i,"/",len(datasets)," ",datasets[i]["name"],"<<<---") tmp_im_list, tmp_gt_list = [], [] tmp_im_list = glob(datasets[i]["im_dir"]+os.sep+'*'+datasets[i]["im_ext"]) # img_name_dict[im_dirs[i][0]] = tmp_im_list print('-im-',datasets[i]["name"],datasets[i]["im_dir"], ': ',len(tmp_im_list)) if(datasets[i]["gt_dir"]==""): print('-gt-', datasets[i]["name"], datasets[i]["gt_dir"], ': ', 'No Ground Truth Found') else: tmp_gt_list = [datasets[i]["gt_dir"]+os.sep+x.split(os.sep)[-1].split(datasets[i]["im_ext"])[0]+datasets[i]["gt_ext"] for x in tmp_im_list] # lbl_name_dict[im_dirs[i][0]] = tmp_gt_list print('-gt-', datasets[i]["name"],datasets[i]["gt_dir"], ': ',len(tmp_gt_list)) if flag=="train": ## combine multiple training sets into one dataset if len(name_im_gt_list)==0: name_im_gt_list.append({"dataset_name":datasets[i]["name"], "im_path":tmp_im_list, "gt_path":tmp_gt_list, "im_ext":datasets[i]["im_ext"], "gt_ext":datasets[i]["gt_ext"], "cache_dir":datasets[i]["cache_dir"]}) else: name_im_gt_list[0]["dataset_name"] = name_im_gt_list[0]["dataset_name"] + "_" + datasets[i]["name"] name_im_gt_list[0]["im_path"] = name_im_gt_list[0]["im_path"] + tmp_im_list name_im_gt_list[0]["gt_path"] = name_im_gt_list[0]["gt_path"] + tmp_gt_list if datasets[i]["im_ext"]!=".jpg" or datasets[i]["gt_ext"]!=".png": print("Error: Please make sure all you images and ground truth masks are in jpg and png format respectively !!!") exit() name_im_gt_list[0]["im_ext"] = ".jpg" name_im_gt_list[0]["gt_ext"] = ".png" name_im_gt_list[0]["cache_dir"] = os.sep.join(datasets[i]["cache_dir"].split(os.sep)[0:-1])+os.sep+name_im_gt_list[0]["dataset_name"] else: ## keep different validation or inference datasets as separate ones name_im_gt_list.append({"dataset_name":datasets[i]["name"], "im_path":tmp_im_list, "gt_path":tmp_gt_list, "im_ext":datasets[i]["im_ext"], "gt_ext":datasets[i]["gt_ext"], "cache_dir":datasets[i]["cache_dir"]}) return name_im_gt_list def create_dataloaders(name_im_gt_list, cache_size=[], cache_boost=True, my_transforms=[], batch_size=1, shuffle=False): ## model="train": return one dataloader for training ## model="valid": return a list of dataloaders for validation or testing gos_dataloaders = [] gos_datasets = [] # if(mode=="train"): if(len(name_im_gt_list)==0): return gos_dataloaders, gos_datasets num_workers_ = 1 if(batch_size>1): num_workers_ = 2 if(batch_size>4): num_workers_ = 4 if(batch_size>8): num_workers_ = 8 for i in range(0,len(name_im_gt_list)): gos_dataset = GOSDatasetCache([name_im_gt_list[i]], cache_size = cache_size, cache_path = name_im_gt_list[i]["cache_dir"], cache_boost = cache_boost, transform = transforms.Compose(my_transforms)) gos_dataloaders.append(DataLoader(gos_dataset, batch_size=batch_size, shuffle=shuffle, num_workers=num_workers_)) gos_datasets.append(gos_dataset) return gos_dataloaders, gos_datasets def im_reader(im_path): return io.imread(im_path) def im_preprocess(im,size): if len(im.shape) < 3: im = im[:, :, np.newaxis] if im.shape[2] == 1: im = np.repeat(im, 3, axis=2) im_tensor = torch.tensor(im, dtype=torch.float32) im_tensor = torch.transpose(torch.transpose(im_tensor,1,2),0,1) if(len(size)<2): return im_tensor, im.shape[0:2] else: im_tensor = torch.unsqueeze(im_tensor,0) im_tensor = F.upsample(im_tensor, size, mode="bilinear") im_tensor = torch.squeeze(im_tensor,0) return im_tensor.type(torch.uint8), im.shape[0:2] def gt_preprocess(gt,size): if len(gt.shape) > 2: gt = gt[:, :, 0] gt_tensor = torch.unsqueeze(torch.tensor(gt, dtype=torch.uint8),0) if(len(size)<2): return gt_tensor.type(torch.uint8), gt.shape[0:2] else: gt_tensor = torch.unsqueeze(torch.tensor(gt_tensor, dtype=torch.float32),0) gt_tensor = F.upsample(gt_tensor, size, mode="bilinear") gt_tensor = torch.squeeze(gt_tensor,0) return gt_tensor.type(torch.uint8), gt.shape[0:2] # return gt_tensor, gt.shape[0:2] class GOSRandomHFlip(object): def __init__(self,prob=0.5): self.prob = prob def __call__(self,sample): imidx, image, label, shape = sample['imidx'], sample['image'], sample['label'], sample['shape'] # random horizontal flip if random.random() >= self.prob: image = torch.flip(image,dims=[2]) label = torch.flip(label,dims=[2]) return {'imidx':imidx,'image':image, 'label':label, 'shape':shape} class GOSResize(object): def __init__(self,size=[320,320]): self.size = size def __call__(self,sample): imidx, image, label, shape = sample['imidx'], sample['image'], sample['label'], sample['shape'] # import time # start = time.time() image = torch.squeeze(F.upsample(torch.unsqueeze(image,0),self.size,mode='bilinear'),dim=0) label = torch.squeeze(F.upsample(torch.unsqueeze(label,0),self.size,mode='bilinear'),dim=0) # print("time for resize: ", time.time()-start) return {'imidx':imidx,'image':image, 'label':label, 'shape':shape} class GOSRandomCrop(object): def __init__(self,size=[288,288]): self.size = size def __call__(self,sample): imidx, image, label, shape = sample['imidx'], sample['image'], sample['label'], sample['shape'] h, w = image.shape[1:] new_h, new_w = self.size top = np.random.randint(0, h - new_h) left = np.random.randint(0, w - new_w) image = image[:,top:top+new_h,left:left+new_w] label = label[:,top:top+new_h,left:left+new_w] return {'imidx':imidx,'image':image, 'label':label, 'shape':shape} class GOSNormalize(object): def __init__(self, mean=[0.485,0.456,0.406], std=[0.229,0.224,0.225]): self.mean = mean self.std = std def __call__(self,sample): imidx, image, label, shape = sample['imidx'], sample['image'], sample['label'], sample['shape'] image = normalize(image,self.mean,self.std) return {'imidx':imidx,'image':image, 'label':label, 'shape':shape} class GOSDatasetCache(Dataset): def __init__(self, name_im_gt_list, cache_size=[], cache_path='./cache', cache_file_name='dataset.json', cache_boost=False, transform=None): self.cache_size = cache_size self.cache_path = cache_path self.cache_file_name = cache_file_name self.cache_boost_name = "" self.cache_boost = cache_boost # self.ims_npy = None # self.gts_npy = None ## cache all the images and ground truth into a single pytorch tensor self.ims_pt = None self.gts_pt = None ## we will cache the npy as well regardless of the cache_boost # if(self.cache_boost): self.cache_boost_name = cache_file_name.split('.json')[0] self.transform = transform self.dataset = {} ## combine different datasets into one dataset_names = [] dt_name_list = [] # dataset name per image im_name_list = [] # image name im_path_list = [] # im path gt_path_list = [] # gt path im_ext_list = [] # im ext gt_ext_list = [] # gt ext for i in range(0,len(name_im_gt_list)): dataset_names.append(name_im_gt_list[i]["dataset_name"]) # dataset name repeated based on the number of images in this dataset dt_name_list.extend([name_im_gt_list[i]["dataset_name"] for x in name_im_gt_list[i]["im_path"]]) im_name_list.extend([x.split(os.sep)[-1].split(name_im_gt_list[i]["im_ext"])[0] for x in name_im_gt_list[i]["im_path"]]) im_path_list.extend(name_im_gt_list[i]["im_path"]) gt_path_list.extend(name_im_gt_list[i]["gt_path"]) im_ext_list.extend([name_im_gt_list[i]["im_ext"] for x in name_im_gt_list[i]["im_path"]]) gt_ext_list.extend([name_im_gt_list[i]["gt_ext"] for x in name_im_gt_list[i]["gt_path"]]) self.dataset["data_name"] = dt_name_list self.dataset["im_name"] = im_name_list self.dataset["im_path"] = im_path_list self.dataset["ori_im_path"] = deepcopy(im_path_list) self.dataset["gt_path"] = gt_path_list self.dataset["ori_gt_path"] = deepcopy(gt_path_list) self.dataset["im_shp"] = [] self.dataset["gt_shp"] = [] self.dataset["im_ext"] = im_ext_list self.dataset["gt_ext"] = gt_ext_list self.dataset["ims_pt_dir"] = "" self.dataset["gts_pt_dir"] = "" self.dataset = self.manage_cache(dataset_names) def manage_cache(self,dataset_names): if not os.path.exists(self.cache_path): # create the folder for cache os.mkdir(self.cache_path) cache_folder = os.path.join(self.cache_path, "_".join(dataset_names)+"_"+"x".join([str(x) for x in self.cache_size])) if not os.path.exists(cache_folder): # check if the cache files are there, if not then cache return self.cache(cache_folder) return self.load_cache(cache_folder) def cache(self,cache_folder): os.mkdir(cache_folder) cached_dataset = deepcopy(self.dataset) # ims_list = [] # gts_list = [] ims_pt_list = [] gts_pt_list = [] for i, im_path in tqdm(enumerate(self.dataset["im_path"]), total=len(self.dataset["im_path"])): im_id = cached_dataset["im_name"][i] im = im_reader(im_path) im, im_shp = im_preprocess(im,self.cache_size) im_cache_file = os.path.join(cache_folder,self.dataset["data_name"][i]+"_"+im_id + "_im.pt") torch.save(im,im_cache_file) cached_dataset["im_path"][i] = im_cache_file if(self.cache_boost): ims_pt_list.append(torch.unsqueeze(im,0)) # ims_list.append(im.cpu().data.numpy().astype(np.uint8)) gt = im_reader(self.dataset["gt_path"][i]) gt, gt_shp = gt_preprocess(gt,self.cache_size) gt_cache_file = os.path.join(cache_folder,self.dataset["data_name"][i]+"_"+im_id + "_gt.pt") torch.save(gt,gt_cache_file) cached_dataset["gt_path"][i] = gt_cache_file if(self.cache_boost): gts_pt_list.append(torch.unsqueeze(gt,0)) # gts_list.append(gt.cpu().data.numpy().astype(np.uint8)) # im_shp_cache_file = os.path.join(cache_folder,im_id + "_im_shp.pt") # torch.save(gt_shp, shp_cache_file) cached_dataset["im_shp"].append(im_shp) # self.dataset["im_shp"].append(im_shp) # shp_cache_file = os.path.join(cache_folder,im_id + "_gt_shp.pt") # torch.save(gt_shp, shp_cache_file) cached_dataset["gt_shp"].append(gt_shp) # self.dataset["gt_shp"].append(gt_shp) if(self.cache_boost): cached_dataset["ims_pt_dir"] = os.path.join(cache_folder, self.cache_boost_name+'_ims.pt') cached_dataset["gts_pt_dir"] = os.path.join(cache_folder, self.cache_boost_name+'_gts.pt') self.ims_pt = torch.cat(ims_pt_list,dim=0) self.gts_pt = torch.cat(gts_pt_list,dim=0) torch.save(torch.cat(ims_pt_list,dim=0),cached_dataset["ims_pt_dir"]) torch.save(torch.cat(gts_pt_list,dim=0),cached_dataset["gts_pt_dir"]) try: json_file = open(os.path.join(cache_folder, self.cache_file_name),"w") json.dump(cached_dataset, json_file) json_file.close() except Exception: raise FileNotFoundError("Cannot create JSON") return cached_dataset def load_cache(self, cache_folder): json_file = open(os.path.join(cache_folder,self.cache_file_name),"r") dataset = json.load(json_file) json_file.close() ## if cache_boost is true, we will load the image npy and ground truth npy into the RAM ## otherwise the pytorch tensor will be loaded if(self.cache_boost): # self.ims_npy = np.load(dataset["ims_npy_dir"]) # self.gts_npy = np.load(dataset["gts_npy_dir"]) self.ims_pt = torch.load(dataset["ims_pt_dir"], map_location='cpu') self.gts_pt = torch.load(dataset["gts_pt_dir"], map_location='cpu') return dataset def __len__(self): return len(self.dataset["im_path"]) def __getitem__(self, idx): im = None gt = None if(self.cache_boost and self.ims_pt is not None): # start = time.time() im = self.ims_pt[idx]#.type(torch.float32) gt = self.gts_pt[idx]#.type(torch.float32) # print(idx, 'time for pt loading: ', time.time()-start) else: # import time # start = time.time() # print("tensor***") im_pt_path = os.path.join(self.cache_path,os.sep.join(self.dataset["im_path"][idx].split(os.sep)[-2:])) im = torch.load(im_pt_path)#(self.dataset["im_path"][idx]) gt_pt_path = os.path.join(self.cache_path,os.sep.join(self.dataset["gt_path"][idx].split(os.sep)[-2:])) gt = torch.load(gt_pt_path)#(self.dataset["gt_path"][idx]) # print(idx,'time for tensor loading: ', time.time()-start) im_shp = self.dataset["im_shp"][idx] # print("time for loading im and gt: ", time.time()-start) # start_time = time.time() im = torch.divide(im,255.0) gt = torch.divide(gt,255.0) # print(idx, 'time for normalize torch divide: ', time.time()-start_time) sample = { "imidx": torch.from_numpy(np.array(idx)), "image": im, "label": gt, "shape": torch.from_numpy(np.array(im_shp)), } if self.transform: sample = self.transform(sample) return sample