mirror of
https://github.com/xuebinqin/DIS.git
synced 2024-11-26 08:43:17 +01:00
Inference.py
This commit is contained in:
parent
26096937ce
commit
ff195223e5
51
IS-Net/Inference.py
Normal file
51
IS-Net/Inference.py
Normal file
@ -0,0 +1,51 @@
|
|||||||
|
import os
|
||||||
|
import time
|
||||||
|
import numpy as np
|
||||||
|
from skimage import io
|
||||||
|
import time
|
||||||
|
from glob import glob
|
||||||
|
from tqdm import tqdm
|
||||||
|
|
||||||
|
import torch, gc
|
||||||
|
import torch.nn as nn
|
||||||
|
from torch.autograd import Variable
|
||||||
|
import torch.optim as optim
|
||||||
|
import torch.nn.functional as F
|
||||||
|
from torchvision.transforms.functional import normalize
|
||||||
|
|
||||||
|
from models import *
|
||||||
|
|
||||||
|
|
||||||
|
if __name__ == "__main__":
|
||||||
|
dataset_path="" #Your dataset path
|
||||||
|
model_path="" #Your model path
|
||||||
|
result_path="" #The folder path that you want to save the results
|
||||||
|
input_size=[1024,1024]
|
||||||
|
net=ISNetDIS()
|
||||||
|
|
||||||
|
if torch.cuda.is_available():
|
||||||
|
net.load_state_dict(torch.load(model_path))
|
||||||
|
net=net.cuda()
|
||||||
|
else:
|
||||||
|
net.load_state_dict(torch.load(model_path,map_location="cpu"))
|
||||||
|
|
||||||
|
im_list = glob(dataset_path+"/*.jpg")
|
||||||
|
for i, im_path in tqdm(enumerate(im_list), total=len(im_list)):
|
||||||
|
print("im_path: ", im_path)
|
||||||
|
im = io.imread(im_path)
|
||||||
|
if len(im.shape) < 3:
|
||||||
|
im = im[:, :, np.newaxis]
|
||||||
|
im_shp=im.shape[0:2]
|
||||||
|
im_tensor = torch.tensor(im, dtype=torch.float32).permute(2,0,1)
|
||||||
|
im_tensor = F.upsample(torch.unsqueeze(im_tensor,0), input_size, mode="bilinear")
|
||||||
|
image = normalize(im_tensor,[0.5,0.5,0.5],[1.0,1.0,1.0]).type(torch.uint8)
|
||||||
|
if torch.cuda.is_available():
|
||||||
|
image=image.cuda()
|
||||||
|
image = torch.divide(image,255.0)
|
||||||
|
result=net(image)
|
||||||
|
result=torch.squeeze(F.upsample(result[0][0],im_shp,mode='bilinear'),0)
|
||||||
|
ma = torch.max(result)
|
||||||
|
mi = torch.min(result)
|
||||||
|
result = (result-mi)/(ma-mi)
|
||||||
|
im_name=im_path.split('/')[-1].split('.')[0]
|
||||||
|
io.imsave(os.path.join(result_path,im_name+".png"),(result*255).permute(1,2,0).cpu().data.numpy().astype(np.uint8))
|
Loading…
Reference in New Issue
Block a user