This commit is contained in:
Xuebin Qin 2022-07-17 16:14:28 -07:00
parent 7c61e1876d
commit b9e31bdc26
4 changed files with 14 additions and 3 deletions

BIN
.DS_Store vendored

Binary file not shown.

View File

@ -709,9 +709,9 @@ if __name__ == "__main__":
print("building model...")
hypar["model"] = ISNetDIS() #U2NETFASTFEATURESUP()
hypar["early_stop"] = 20 ## stop the training when no improvement in the past 20 validation periods, smaller numbers can be used here e.g., 5 or 10.
hypar["model_save_fre"] = 2000 ## valid and save model weights every 2000 iterations
hypar["model_save_fre"] = 20 ## valid and save model weights every 2000 iterations
hypar["batch_size_train"] = 8 ## batch size for training
hypar["batch_size_train"] = 2 ## batch size for training
hypar["batch_size_valid"] = 1 ## batch size for validation and inferencing
print("batch size: ", hypar["batch_size_train"])

View File

@ -25,7 +25,9 @@
<br>
## 1. [Our DIS5K Dataset V1.0 (Version Alias: DIS5K Sailship)](https://xuebinqin.github.io/dis/index.html)
## 1. Our Dichotomous Image Segmentation (DIS) Dataset
### 1.1 [DIS dataset V1.0: DIS5K](https://xuebinqin.github.io/dis/index.html)
<br>
@ -35,6 +37,15 @@
![complexities-qual](figures/complexities-qual.jpeg)
![categories](figures/categories.jpeg)
### 1.2 [DIS dataset V2.0](https://github.com/xuebinqin/DIS)
<br>
Although our DIS5K V1.0 includes samples from more than 200 categories, many categories, such as human, animals, cars and so on, in real world are not included. [So the current version (v1.0) of our dataset may limit the robustness of the trained models.]() To build the comprehensive and large-scale highly accurate dichotomous image segmentation dataset, we are building our DIS dataset V2.0. The V2.0 will be released soon. Please stay tuned.
Samples from DIS dataset V2.0.
![dis-v2](figures/dis-v2.jpg)
<br>
## 2. APPLICATIONS of Our DIS5K Dataset

BIN
figures/dis-v2.jpg Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 672 KiB